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ABSTRACT

LU, NA. Statistical Issues in Coherent Risk Management. (Under the direction of of

Professor Peter Bloom�eld.)

Measuring risk is a crucial aspect of the portfolio optimization problem in �nance,

and of capital adequacy assessment in risk management. Expected Shortfall (ES�)

has been proposed as a coherent risk measure, by contrast with Value-at-Risk (VaR�)

and the standard-deviation-type of measures. Based on a coherent risk measure, for

instance ES�, we can discuss a coherent capital allocation for the purpose of internal

risk management and performance measure, if ES� is used for economic capital held

by �nancial �rms as a cushion to absorb the unexpected losses. Properly allocating

risk capital down to the business level is important for the purpose of risk management

and portfolio performance measurement. Even if there is a doubt about the reason

for allocating ES� instead of VaR�, the statistical properties of the statistic, marginal

ES�, from the proposed coherent allocation rule, are still of interest, because it is

exactly the sensitivity of the target portfolio's ES�.

The idea of a coherent capital allocation rule by using a cost sharing rule, the

Aumann-Shapley value in game theory, proposed by Denault (2001), happens to result

in the same formula as proposed by Tasche (2000), who independently develops the

\suitable" allocation rule based on the discussion of risk-adjusted returns. The fact,

that two aspects of the concerns are satis�ed by the same allocation formula, brings
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two �elds together in an integrated way, so that a systematic risk management in a

banking system seems very promising.

Fundamental statistical issues arise in several places in a coherent risk management

system. Primary interests will be, and are always, in modeling the pro�t/loss (P/L)

distribution. Statistical modeling is receiving more and more attention currently,

as well as economic modeling. For our purpose, we place more emphasis on the

estimation and inference of ES� and allocation statistics (marginal contribution of

ES�) under di�erent situations. We also modify the back-testing rules based on ES�.

We propose a collection of weighted test statistics aiming at detecting the under-

estimated ES�. Asymptotic properties of the test statistics are o�ered. The power of

the tests in the context of an exponential family and the local alternatives is provided

and the optimal weighting scheme is discussed.
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Part I

Introduction
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Chapter 1

Introduction

1.1 Motivation

This research was originally motivated by the recent advances in quantitative

�nancial risk management theory, especially by emerging concepts of risk measures,

Value-at-Risk, Shortfall Risk, Coherent Risk Measure, and so on. These concepts in

the �eld of quantitative risk management are de�ned in terms of quantiles, conditional

moments and partial moments in general, with respect to the uncertain outcomes

concerned. The uncertain outcomes can be pro�t/loss of certain assets, return of

particular portfolios, or traditional pure losses caused by down-side risks.

Measuring risk is a crucial aspect of the portfolio optimization problem in �nance,

and of capital adequacy assessment in risk management. Expected Shortfall (ES�)

has been proposed as a coherent risk measure compared to Value-at-Risk (VaR�) and
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the standard-deviation-type of measures. ES� is known to satisfy four properties of

coherency as a risk measure, especially the property of sub-additivity, while VaR� or

variance type of measures do not, except in some special situations { the underlying

distributions of portfolio returns are jointly normal, or utility functions of individuals

are quadratic, for instance.

Based on a coherent risk measure, for instance ES�, we can discuss a coherent

capital allocation for the purpose of internal risk management and performance mea-

sure, if ES� is used as economic capital held by �nancial �rms as a cushion to absorb

the unexpected losses. Properly allocating risk capital down to the business level is

important for the purpose of risk management and portfolio performance measure-

ment. Even if there is a doubt about the reason for allocating ES� instead of VaR�,

the statistical properties of the statistic, marginal ES� from the proposed coherent

allocation rule, are still of interest, because it is exactly the sensitivity of the target

portfolio's ES�.

The idea of a coherent capital allocation rule by using a cost sharing rule, the

Aumann-Shapley value in game theory, proposed by Denault (2001), happens to

result in the same formula as proposed by Tasche (2000), who independently develops

the \suitable" allocation rule based on the discussion of risk-adjusted returns. The

former is based on axiomatic game theory. By imposing reasonable conditions on

an allocation rule to be \fair" as a cost sharing rule, the Aumann-Shapley value

is the unique allocation. The latter is based on a popular management concept of



www.manaraa.com

4

risk adjusted performance measurement - Return on Risk-adjusted Capital(RORAC),

which is an optimization objective function of portfolio allocation, measured as ratio

of expected cash 
ow and economic capital. The fact, that two aspects of the concerns

are satis�ed by the same allocation formula, brings two �elds together in an integrated

way, so that a systematic management in a banking system seems very promising.

Fundamental statistical issues arise in several places in a coherent risk management

system. Primary interests will be, and are always, in modeling the pro�t/loss (P/L)

distribution. Statistical modeling is attracting more attention currently, as well as

economic modeling. For our purpose, we place more emphasis on the estimation

and inference of ES� and allocation statistics (marginal contribution of ES�) under

di�erent situations. We also modify the back-testing rules based on ES�.

1.2 Outline of the Thesis

This thesis has three parts. Part I - Introduction- has one chapter, Chapter

1. Chapter 1 consists of motivation of this research and the outline of the thesis.

Part II - Economic Theory - has three chapters, Chapter 2, 3, 4. Chapter 2 is an

introduction to risk measure and decision problems. We particularly focus on risk

measure and �nancial/risk management problems in portfolio selection/risk capital

assessment. Chapter 3 is an introduction to coherent risk management - coherent risk

measure and coherent risk capital allocation. Chapter 4 is about coherent allocation

and suitable allocation. Part III- Statistical Theory - has two chapters, Chapter 5 and
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6. In Chapter 5, we discuss the di�erent modeling methods for ES� and Sensitivity

of ES� (SES�). In Chapter 6, we propose a class of test statistics for the purpose

of back-testing ES�, and give their properties: consistency and power considerations.

We draw conclusions in Chapter 7, which constitutes Part IV.

1.3 Contributions

This dissertation addresses both economic and statistical issues in a coherent risk

management system. Statistical issues are the focus of this thesis. Because of the

inherent complexity of the behavior of the uncertain outcomes - �nancial P/L, this

thesis investigates the statistical estimation methods for the coherent risk measure

(ES�) and coherent allocation of risk capital (SES�), and modi�es back-testing pro-

cedure based on ES�. The dissertation makes two main contributions to the �eld of

coherent risk management.

First, we propose a consistent empirical estimator for SES�, and give analytic

formula for VaR�, ES� and SES� of the multivariate t-distribution and the general

elliptical family. Monte Carlo simulations are performed to evidence the slow con-

verging speed of the proposed empirical estimator in a multivariate t-distribution

framework. When some prior knowledge of the true distribution family is known,

an accelerate Monte Carlo simulation can be used to speed up the converging pro-

cess. Based on the analytic formula for SES�, we discover the proportional invariance

property of the allocation statistics for the centered multivariate t-distribution and
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the centered elliptical family.

Second, we modi�es the back-testing procedure based on ES�. We propose a col-

lection of consistent test statistics based on ES� with di�erent deterministic weighting

functions imposed on the lower tail of the distribution. We inverse the characteristics

functions with the Fast Fourier Transformation (FFT) combined with linear interpo-

lation methods to tabulate the critical values for the two special cases - test statistics

with equal weighting and reciprocal weighting functions. The exact method and the

approximating methods are utilized and compared at a three-digit precision in this

context. We further prove the asymptotic normality of the test statistics in a gen-

eralized framework, where the weighting function can be either uniformly bounded

deterministic function, or a uniformly integrable and converging random weighting

process. The optimal weighting scheme, in terms of optimal local power, is discussed

for a special exponential family.
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Part II

Economic Theory
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Chapter 2

Risk Measure and Decision

Problems

People always have to choose actions from a given set of alternatives with uncertain

consequences. Consider, for instance, an investor who has to choose his portfolio

among di�erent investment opportunities, or an individual who has to decide whether

or not to buy a super-ball ticket. We will call the uncertain consequence \risk",

although conventionally people are using the term \risk" for di�erent purposes and it

has no clear de�nition. We describe the risks by random variables with distributions

that are known to the decision maker. This is sometimes called the situation of

decision under risk in contrast to decision under uncertainty where the decision maker

doesn't know the distributions of the random variables.

Von Neumann and Morgenstern (1947) [57] described some axioms for a rational
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decision maker making decisions under risk, which imply the so-called expected utility

hypothesis. This hypothesis says that, for a rational decision maker, there exists a

utility function u(�) : R ! R such that he/she prefers Y to X if and only if Eu(X) �

Eu(Y ). Given exactly a utility function, and distributions of X and Y , it is not

diÆcult to reach a conclusion by making the pairwise comparison. In practice, since

it is impossible to know exactly the decision maker's utility function, we are interested

in �nding rules for the distributions of random variables that enable prediction of the

decision maker's choice when we partially know the properties of his utility function:

monotonicity, and concavity, for instance. Or similarly, we are interested in �nding

out whether a group of decision makers with di�erent utility functions will reach the

same decision or not. Stochastic Dominance (SD) rules were developed aiming to

answer such questions.

Stochastic Dominance The central idea of the SD rules is to simplify the decision

problem by sorting out the dominated alternatives. SD allows pairwise comparison

of cumulative distribution functions. Let F (x) and G(x) be cumulative distribution

functions of X and Y , respectively. X dominates Y by First (FSD), Second (SSD),

or Third Order Stochastic Dominance (TSD) if and only if

F (x) � G(x); 8x 2 R; (FSD)R v
�1[G(x)� F (x)]dx � 0; 8v 2 R; (SSD)R t
�1
R v
�1[G(x)� F (x)]dxdv � 0; 8t 2 R and

R1
�1 F (x)dx �

R1
�1G(x)dx; (TSD)

(2.1)
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It has been shown that the stochastic ordering from the de�nition of FSD, SSD,

and TSD is consistent with the ordering generated by maximizing expected utilities

of the speci�c classes,

U1 � fu(x)ju0(x) > 0; 8x 2 Rg () FSD

U2 � fu(x)ju0(x) > 0; and u
00

(x) < 0; 8x 2 Rg () SSD

U3 � fu(x)ju0(x) > 0; u
00

(x) < 0 and u
000

(x) > 0; 8x 2 Rg () TSD

(2.2)

SD rules are playing a prominent role in the literature on decision under risk (Quirk

and Saposnik [43], 1962, Fishburn[26], 1964, etc.). The applications of SD rules are

widespread in portfolio management, and risk management 1 among others. Since SD

rules involve pairwise comparison of the set of alternative probability distributions,

it is useful for problems with prespeci�ed and �nite number of alternatives, such

as capital budgeting type problems, but is computationally infeasible for portfolio-

selection-type of problems involving an in�nite convex set of choices among alternative

probability distributions. In addition, the theory requires the decision maker to take

the complete distribution of outcomes into consideration; the decision task can be

simpli�ed if one could concentrate on a few attributes that contain the complete

information about the distribution under consideration. This idea lies at the heart of

the so-called two parameter selection rules, or mean-risk (or return-risk) approaches.

1Through the whole discussion of this dissertation, we will loosely use \risk management" for
\�nancial risk management", speci�cally for market risk management and credit risk management,
in which probabilistic approach plays an important role.
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The two parameters are the return measure and the risk measure.

Coherence There has been no question of using mean as a return measure, but

people have been arguing what measures are appropriate for risk for centuries, not

only for portfolio selection problems but also for risk management problems. Artzner,

Delbaen and Heath (1997, 1999) [5, 6] proposed the necessary properties for a risk

measure to be coherent. By using this criterion, we can discuss the coherency of the

proposed risk measures under di�erent conditions.

In section 1.1, for portfolio selection problem, we will introduce Markowitz-Tobin

(1959, 1958) [40] mean-minimum variance (MV) selection rule, and Bawa (1975, 1976,

1977, 1978) [11, 12, 13] mean-lower partial moment (MLPM) functional rules (includ-

ing Roy's Safety-First (SF) rules), which use variance and lower partial moments as

risk measures, respectively. In section 1.2, we consider using a risk measure to calcu-

late economic capital held by �nancial �rms as a cushion to absorb the unexpected

losses, which is a typical discussion in risk management for �nancial �rms and insur-

ance companies.

2.1 Risk Measure and Portfolio Selection

The traditional way of reducing the dimensionality of the SD rules is to add

restrictions to the probability distributions of security and portfolio returns, assuming

normal or stable distributions. In the case of normal distribution, the SD rule reduces
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to the well-known Markowitz-Tobin mean-minimum variance (MV) selection rule for

risk averse individuals: the mean-variance-frontier type of discussion. MV is an

optimal rule for risk averse individuals with increasing and concave utility functions

when the distribution of portfolio returns is normal. Samuelson (1958) [51] and Ross

(1976) [48] showed that MV is a reasonable approximation to the optimal selection

rules when \riskiness" of returns is limited or the number of securities is large enough,

i.e. n!1.

In this situation, variance or standard deviation is a natural risk measure. How-

ever, the normal-distribution assumption can not be upheld even for market risk as

long as the portfolio includes derivatives, let alone the empirical evidence of fat-tailed

distribution of returns. The normal distribution assumption seems to be an inade-

quate approximation in the case of a credit portfolio.

An alternative way is to put restrictions on decision maker's utility functional

space, assuming quadratic utility functions,

u(x) = ax� bx2:

where a; b 2 R+ :

In the case of quadratic utility function, the SD rule reduces to MV again, but

quadratic utility functional space is too limited to represent decision makers' prefer-

ences.

MLPM rules seem to be a more general framework than the above two approaches.
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Without making undue distributional restrictions, it has been shown that the SD rules

are MLPM rules where the Lower Partial Moment (LPM) functionals, computed at

every point in the domain of the underlying random variable, may be viewed as the

risk measure.

This class of risk measures is consistent with the de�nition of increasing risk; see

Rothschild and Stiglitz (1970), Machina and Pratt (1997) [49, 38] (for arbitrary prob-

ability distributions). LPMs are measures of downside or shortfall risk in the sense

that only negative deviations from a target outcome are taken into consideration. In

the case of continuous distributions with outcomes x 2 (�1;1), each LPM can be

computed as follows,

LPM t
n(X) =

Z t

�1
(t� x)ndF (x);

where X is a random variable, F (x) is its cumulative distribution function (cdf), and

n 2 Z.

Some of the most frequently used risk measures are special cases of LPMs. For

instance, semi-variance corresponds to the LPM�
2 , Value at Risk (VaR�) is a sort of

LPM t
0, and Expected Shortfall (ES)2 is the LPM t

1.

The LPM approach is of special importance for applications in portfolio theory,

and to risk management as well, as we will see in the discussion of the later chapters.

2Following De�nition 1 and De�nition 3 in the later chapter, it is not diÆcult to verify that for
a continuous variable X ,

VaR�(X) = LPM t

0(X)

and

ES�(X) =
1

�
LPM t

1 � t

where t = VaR�(X).
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Plausible ordering properties of LPMs, applicable to arbitrary distributions and

consistent with utility theory are:

For X to be preferred to Y , it is necessary and suÆcient that (see Bawa, 1978,

[13]),

� 8u(x) 2 U1 : LPM
t
0(X) � LPM t

0(Y ); 8t 2 R, with at least one strict inequality

for t,

� 8u(x) 2 U2 : LPM
t
1(X) � LPM t

1(Y ); 8t 2 R, with at least one strict inequality

for t,

� 8u(x) 2 U3 : LPM
t
2(X) � LPM t

2(Y ); 8t 2 R, with at least one strict inequality

for t and
R +1
�1 F (x)dx � R +1

�1 G(x)dx.

The Safety-First (SF) rule, introduced by Roy (1952) [50], stipulates choice of an

alternative that provides a target mean return while minimizing the probability of

the return falling below some threshold of a disaster. The SF rule has generally been

regarded as outside the expected utility paradigm, but it can be naturally generalized

to nth order SF rules using higher order LPMs of the probability distributions; see

Bawa (1978) [13].

It is not surprising that VaR� is in the spirit of Roy's SF rules as a risk measures,

while Expected Shortfall (ES�) is a sort of Bawa's Generalized SF/MLPM, as we will

discuss in the later chapters. MV is equivalent to both mean-VaR� and mean-ES�,

when normality is assumed.
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2.2 Risk Measure and Risk/Economic Capital

As we mentioned before, the uncertain consequence is called \risk" and mathe-

matically we use random variables to describe risks. Particularly, for the portfolio

selection problems and/or the risk management problems, risks are the uncertainty

of the returns of the portfolios3.

So far, individual investors, �nancial �rms or insurance companies are all treated

as decision makers facing choice (or decision) under risk. Next, in order to study

the risk management problems, we will treat them separately, because they have

di�erent characteristics, in terms of the risk management problems. We will focus

on the corporate aspects of the risk management problems after we discuss their

di�erences.

Unlike �nancial �rms or insurance companies, individual investors may or may

not buy an insurance (if there exists one, or simply keep certain amount of risk-free

asset, or cash) to protect themselves from big losses, if they are not using borrowed

money for their portfolio investment or if they are not investing in derivatives. They

may be typically suggested to do so anyhow, but it is totally up to them. In this

case, risk measure, in the two-parameter selection rules, is nothing but a screening

device, to screen out the portfolios with targeted returns, but higher risks, and the

risk measure need not to be linked with the concept of economic capital, which we

will introduce in the following discussions.

3Or, the uncertainty of the net worths of the portfolios, as in Artzner (1999) [6].



www.manaraa.com

16

Financial �rms or insurance companies could well, and would often be regulated to,

hold an amount of risk-less capital, as an insurance/collateral against the uncertainty

of the return of their portfolios; this is the so-called risk/economic capital. Consider

a �nancial �rm: it can be a highly leveraged investor, i.e. an investor �nancing his

assets largely with borrowed money. His risk is creditor's risk, and his loss is creditors'

loss. If his investments do not generate enough returns, the investor has to fall back

on his equity to meet his obligations. He goes bankrupt as soon as the equity is

exhausted, and the creditors su�er losses. In addition, the in
uence of such events

might be even worse to the stability of the whole economic system; we can remind

readers easily by the following events:

� In December 1994, Orange County stunned the markets by announcing that its

investment pool had su�ered a loss of $1.6 billion (interest rate swaps). This

was the largest loss ever recorded by a local government investment pool, and

led to the bankruptcy of the county shortly thereafter.

� In 1995, Barings, London's oldest merchant bank, lost $830 million on a spec-

ulative position in Nikkei 225 stock index futures and went bankrupt.

� In 1995, Daiwa Bank lost $1.1 billion - one seventh of the bank's capital because

of concealed trades.

� In 2002, Allied Irish Bank lost $700 million because of concealed trades.

These are just a few examples from a long list in the history. If they had held
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enough risk capital based on their risk exposures, they might have survived and some

of their creditors might not have su�ered losses.

In the case of a highly leveraged investor or �nancial �rms, some risk measures

(like LPMs) from two-parameter selection rules, can be not only a screening device,

but also part of the calculation of risk/economic capital among other reasons.

VaR� has become a popular risk measures for risk capital adequacy calculation,

since the Basel Committee on Banking Supervision (1996) [10] permitted banks to

make use of it in their internal models, for the capital required by market risks.

However, other risk measures, like ES�, are potentially suitable for this purpose, too.

Moreover, it has been shown that ES� is coherent but VaR� is not, as we will discuss

in the next part, although ES� is not yet widely used.

After introducing di�erent risk measures that have been proposed from di�erent

perspectives, we will give a close look to the risk measures proposed for risk capital

evaluation: VaR� and ES�. ES� is often cited as a coherent risk measure, while VaR�

is not.

Properly allocating risk capital down to the business level is of importance for the

purpose of performance measurement and risk management as well, which is often

referred as risk capital allocation in the literatures. We will introduce the concept

of coherent allocation of risk capital in this part, and use the term coherent risk

management to refer to both concepts of coherency in the whole discussion.

While coherent risk measure is based on the axiomatic discussion of the properties
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that a reasonable risk measure should bear, coherent allocation of risk capital stems

from the well-known game theoretic discussion of Aumann-Shapley values and the

\suitable" allocation rule based on the discussion of risk-adjusted returns on capital

(RORAC). Two independent discussions of the risk capital allocation mechanisms

result in the same allocation formula when ES� is utilized for risk capital evaluation,

or more generally a coherent risk measure is used. We further discuss the related

�ndings from this \coincidence".

In Chapter 3, we will introduce the concept of Coherent Risk Management con-

sisting of both Coherent Risk Measure and Coherent Allocation of Risk Capital. In

Chapter 4, we will discuss the two approaches, Aumann-Shapley value and \suitable"

allocation rule, for the coherent allocation of risk capital.
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Chapter 3

Coherent Risk Management

The concept of coherent measures of risk has been introduced recently in a series

of papers, including [5, 6, 7], by P. Artzner, F. Delbaen, S. Eber and D. Heath, for the

purpose of risk capital calculation. Coherent measures of risk, discussed in the next

section, are de�ned through a set of axioms on a linear space of random variables

{ representing the feasible choices of a portfolio. VaR� as a risk measure is heavily

criticized for not being coherent, especially for not being sub-additive (see Artzner

et al., 1999, [6]). ES� has been proposed as a natural remedy for the de�ciencies of

VaR�.

The concept of coherent allocation of risk capital has been introduced by Denault

(2001) in [22], for the allocation of risk capital. A coherent allocation of risk capital

is de�ned through a set of properties to be ful�lled by a fair risk capital allocation

principle, when the calculation of economic capital is based on a coherent risk mea-
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sure.

We borrow the popular expression, \coherent", and talk about coherent risk man-

agement, embracing both concepts, here. In section 3.1, we will introduce the concept

of coherent measures of risk, and di�erent versions of ES�. In section 3.2, we will in-

troduce the concept of coherent allocation of risk/economic capital and an allocation

rule based on ES�.

3.1 Coherent Risk Measure and Expected

Shortfall

Mathematically, a risk measure is a real valued function

r : A! R [ f1g;

where A � Rn+ , a vector space consisted of the weights of assets in the portfolio, given

a base of the linear space representing the feasible assets of the decision maker. We

will not impose any special property on the function r(�) to be a risk measure for the

time being, but we will always assume it is a di�erentiable function. Tasche (2000) [55]

and Scaillet (2002) [52] gave some di�erentiability conditions of risk measures. The

conditions are relatively mild, in comparison with temerarious assumptions common

in the area of risk management. For some speci�c risk measures like VaR� and ES�,

explicit �rst order derivatives were provided in these two papers.

Mapping the riskiness of a set of portfolios by a single function is not an easy task.
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Some knowledge about the portfolio is required, such as worse-case scenarios based

on human insights or statistical models of the portfolio cash 
ows based on historical

data. We will focus on two risk measures, VaR� and ES�, which need statistical

models for the cash 
ows.

Value-at-Risk, or VaR� for short, a widely used risk measure, answers the question:

what is the minimum loss incurred in the � worst cases of the market changes that

a�ect the value of the portfolio? So, values of � is desirable to be close to 0. VaR� has

become one of the most important and generally accepted measures of risk, which has

achieved the high status of being written into industry regulations (see, for instance,

[42] by M. Pritsker).

To be consistent with the notions in [6] and [3], we de�ne some real valued random

variable X on the probability space (
;A; P ), the random P/L of some asset or

portfolio.

We formally de�ne VaR� in the following way.

De�nition 1 Value at Risk. Given � 2 [0; 1], the value-at-risk VaR� of a random

variable X with cumulative distribution function P (�) at level � is,

q+� (X) = supfx 2 R j P [X < x] � �g; � 2 [0; 1)

VaR�(X) = �q+� (X):

When the portfolio has a joint normal/elliptical distribution for its assets P/L, X
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and Y , we know that VaR� satis�es:

VaR�(X + Y ) � VaR�(X) + VaR�(Y );

which is the so-called sub-additivity property. This property re
ects the fact that a

diversi�ed portfolio should be less risky than a non-diversi�ed one to any investors.

Any sensible risk measure should satisfy this basic property if risk measures are

supposed to be \good" indicators of riskiness of portfolios, in the sense that more risky,

higher risk measures. But when the portfolio does not have a joint normal/elliptical

distribution of its assets P/L, VaR� might not have such a necessary property as risk

measures, which is very easy to be illustrated with a counter example, such as the

one in 3.3 of [6], page 216.

If any joint P/L can be approximated by a joint normal/elliptical distribution, life

will be much easier. VaR� can be a very good candidate for risk measures, because

VaR� has very good interpretations and is very easy to be understood among other

reasons. But more and more empirical results have shown that joint normal/elliptical

distributions are not a good approximation for the real world. Then, it becomes an

interesting question that whether there exists a \good" (coherent) risk measure, which

does not depend on distributional properties of random variables but still keep more

nice properties than VaR�. Artzner et al. (1999) [6] de�ned the coherency for risk

measures in a very general framework, and examined the popular risk measures that

are currently used for di�erent purposes. Their de�nition of coherent risk measures

is as follows,
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De�nition 2 Coherent Measure of Risk. Consider a set 0 2 V of real-valued map-

pings from a measurable space (
;A) to R,

� : V ! (�1;1];

with �(0) = 0. We call this mapping a coherent measure of risk, if it is

1. monotonic:

X; Y 2 V; X � Y ) �(X) � �(Y );

2. sub-additive:

X; Y;X + Y 2 V ) �(X + Y ) � �(X) + �(Y );

3. positively homogeneous:

X 2 V; h > 0; hX 2 V ) �(hX) = h�(X);

4. translation invariant:

X 2 V; a 2 R; X + a 2 V ) �(X + a) = �(X)� a

This coherency is de�ned in a very general way, since a probability measure is not

even de�ned on the measurable space (
;A). In the decision-under-risk problems, the

probability measure P on the measurable space is assumed to be known and can be

used to construct risk measures, usually in terms of marginal probability measures.

This leads to the following discussion of probabilistic/statistical risk measures: VaR�

and ES�.
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ES in several variants has been proposed as a remedy for the de�ciencies of VaR�,

which in general is not a coherent risk measure. ES� is a natural coherent measure

comparing to VaR�. The formal de�nition of ES� is as follows,

De�nition 3 Expected Shortfall. Let (
;A; P ) be a probability space and � 2 (0; 1).

Consider a real random variable X on (
;A; P ) with E(X�) <1. Then

ES�(X) = ��1
Z �

0

V aR�(X) d� = ���1
Z �

0

q+� (X) d�:

Remark 1 Expected Shortfall.

� Acerbi et al. [2] �rst named Expected shortfall. Delbaen [22] and Kusuoka [37]

considered ES� before without naming it and Rockafellar and Uryasev [44, 45]

called it Conditional Value-at-Risk (CV aR�) and Artzner et al. [5, 6] call it tail

conditional expectation (TCE�)
1. Bertsimas et al. [14] gave di�erent versions

of Expected Shortfall for continuous distributed P/L.

� Acerbi (2002) [1] studies a space of coherent risk measures M�, based on the

expansions of some coherent elementary basis measures, for instance, ES�,

M�(X) = �
Z 1

0

q+p (X)�(p)dp;

with � 2 L1[0; 1]. M�(X) is also called \spectral measures of risk generated by

1Notice that TCE� and CV aR� are not coherent risk measures in general. They coincides with
ES� (and hence coherent) only under the certain conditions such as the case of continuous distributed
P/L (see e.g. Acerbi and Tasche (2002)[3]).
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ES�". He further gives � a name \risk aversion function", which is mathemat-

ically a weighting function with properties

1. � > 0 in L1[0; 1],

2. � is non-increasing2 in L1[0; 1],

3. jj�jj1 =
R 1

0
j�(p)jdp = 1.

From economics point of view, the choice of weighting functions, or \risk spec-

trum" in L1[0; 1] or L1[0; �] will be directly related to the risk capital calculation.

Thus, the normalized condition is critical in order to have a coherent induced

measure. We will discuss, in the later chapters, that the weighting functions for

constructing test statistics purposes can be based on a much richer functional

space and can be optimally determined in terms of the testing power. As we

will point out, the intuition for the whole weighting mechanism remains the

same: the more the risk capital is kept aside, the more \risk averse" is the risk

manager.

� Kusuoka (2001) [37] and Acerbi (2002) [1] argue that ES� is the \smallest"

coherent and \law invariant"3 risk measure to dominate VaR�, which was men-

2We change Acerbi's discussion on this property from \decreasing" to \non-increasing" after we
notice that equal weighting is a special case. For example, the basis measures generating the space
are natural equal weighting cases.

3A rough interpretation of law invariance might be \can be estimated from statistical observations
only", which makes statistical analysis of great importance in this �eld. Mathematically, it is

X;Y 2 V; P [X � t] = P [Y � t] for all t 2 R =) �(X) = �(Y )
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tioned previously in Delbaen (1998) [21]4. Dasche (2002) [54] give a thorough

summary of various properties of ES�.

3.2 Coherent Allocation of Risk/Economic Capi-

tal

The second use of the term \coherency" is for risk capital allocation. Recall that

risk capital is risk-free, low return assets, which are held as an insurance/collateral

against the unexpected losses of the portfolios in the �rm. Financial �rms will gen-

erally incur dead-weight cost by holding an amount of low return risk capital. It

is natural to �nd a fair allocation of the burden among the constituents, especially

when the allocation provides incentives for constituents to reduce risks while keeping

a certain level of returns, or for the constituents' internal performance comparison

purposes (for example in a RORAC approach, see Tasche [55]).

Again, the problem of risk capital allocation is interesting and non-trivial, because

the sum of the risk capital of each constituent is usually larger than the risk capital

of the �rm taken as a whole. The advantage of reducing total costs by pooling �rms'

activities need to be shared fairly among constituents. This kind of problems will

naturally fall into the category of sharing joint costs or surplus in economic theory in

large. The current literatures o�ered two direct resolutions to this speci�c risk capital

4It is a more probabilistic discussion.
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allocation problem. They are Denault [22]'s game theoretic (axiomatic) approach and

Tasche [55]'s RORAC approach. As we will show that they o�er the same solution

formula for the risk capital allocation rules. Denault [22] is a thorough discussion

of a game theoretic (axiomatic) approach and de�nes the coherent allocation of risk

capital. Tasche [55]'s RORAC approach reaches the similar results by de�ning \suit-

ableness" of risk contributions (allocation), whose total risk capital can be based on

any risk measures.

1. Game theoretic approach by Denault (2001) [22]

In Denault (2001) [22], the risk capital allocation problem is modeled as a

coalitional fuzzy game between constituents or portfolios. The Aumann-Shapley

value emerges as a most promising allocation principle for the fuzzy game (or

coalitional game with fractional players). Mathematical details will be furnished

in the next chapter for the purpose of comparisons.

2. RORAC approach by Tasche (2000)

In Tasche (2000) [55], through de�ning \suitable" allocation for performance

measurement, the same allocation formula was proposed for risk capital allo-

cation. An allocation is called \suitable" if when the risk-adjusted return of a

portfolio is \above/below average", then at least locally increasing/decreasing

the share of this portfolio improves the overall return of the �rm. We will give

the detailed mathematical discussion in the next chapter for the purpose of
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comparisons.
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Chapter 4

Coherent and Suitable Allocation

Again, the allocation of risk capital is interesting and non-trivial for the risk

managers of �nancial institutions or insurance �rms. In practice, di�erent allocation

schemes can be utilized internally for di�erent purposes. As an example, we will

consider allocation rules for both the down-side risk management problem and the

portfolio selection problem in a �nite economy 1.

Since risk capital is designed as a capital reserve to cover the potential big losses,

which is exactly the case in the banking systems, one concern is about \fair" allocation

in terms of sharing cost during the course of holding the low return assets. On the

other hand, optimal portfolios need to be constructed to achieve the best pro�tability

of the �rm. Risk capital allocation schemes are critical in ranking the pro�tability

of the assets in the portfolio, or in signaling the best investment opportunities. It

1By saying �nite economy, we mean that there is a �nite number of participants in the market, op-
posing to the usual equilibrium discussion based on in�nite economy with in�nite many participants
in the economic literatures.
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seems that one allocation scheme can serve both purposes if the risk measure or risk

capital is a coherent one, given Denault (2001) [22] and Tasche (2000) [55]. While the

former approach is focusing on the \fair" allocation and the latter is about \suitable"

allocation for performance measurement, both approaches reach the same conclusion:

the Aumann-Shapley value.

The structure of this chapter is as follows: in Section 3.1, we give the mathematical

details in formulating the coherent risk capital allocation rules; in Section 3.2, suitable

allocation based on RORAC approach is introduced; Section 3.3 is about the related

research �ndings to the two approaches.

4.1 Coherent Allocation of Risk Capital - a Recap

The concept of Coherent Allocation of Risk Capital was introduced by Denault

(2001) [22]. Before introducing this concept, we need to give some background about

the fuzzy game (coalitional game with fractional players) and its core so that we can

model the risk capital allocation problem as a fuzzy game later.

De�nition 4 A Fuzzy Game (A Coalitional Game with Fractional Players), (N;�; r),

consists of

� a �nite set N of players, with jN j = n;

� a positive vector � 2 Rn+ , each component representing for one of the n players

his full involvement;
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� a real-valued cost function r : Rn �! R; r : � 7! r(�) such that r(0) = 0:

De�nition 5 The Fuzzy Core (\no-undercut" condition) of a fuzzy game (N;�; r) is

the set of allocations 2 k 2 Rn for which �
0

k � r(�) for all � 2 Rn+ , 0 � � � � and

�
0

k = r(�).

The axioms needed for a risk capital allocation to be coherent was introduced as

follows by Denault (2001):

De�nition 6 Coherent Allocation of Risk Capital.

Let r be a coherent risk measure as de�ned in Chapter 3. A fuzzy value

� : (N;�; r) �! k 2 Rn

is coherent if it satis�es the properties de�ned below, and if k is an element of the

fuzzy core:

� Aggregation Invariance Suppose the risk measure r and �r satisfy r(�) =

�r(��) for some m� n matrix � and all � such that 0 � � � � then

�(N;�; r) = �
0

�(N;��; �r)

� Continuity The mapping � is continuous over the normed vector space Mn

of continuously di�erentiable functions r : Rn+ �! R that vanish at the origin.

2k = �(N;�; r), with � de�ned in De�nition 6.
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� Non-negativity under r non-decreasing (Monotonicity) If r is non-decreasing,

in the sense that r(�) � r(��) whenever 0 � � � �� � �, then

�(N;�; r) � 0

� Dummy Player Allocation If i is a dummy player, in the sense that

r(�)� r(��) = (�i � ��i )
�(Xi)

�i

whenever 0 � � � � and �� = � except in the ith component, then

ki =
�(Xi)

�i

� Fuzzy core De�ned as above, in De�nition 5.

De�nition 7 Aumann-Shapley Value

�ASi (N;�; r) = kASi =

Z 1

0

@r(
�)

@�i
d


Theorem 1 Aumann-Shapley Value is the Unique Coherent Fuzzy Value.

If (N; r;�) is a fuzzy game, with a coherent cost function, r, which is di�erentiable

at �, then the Aumann-Shapley value is a unique coherent fuzzy value, and

�ASi (N;�; r) = kASi =
@r(�)

@�i

Proof: See Denault (2001) [22].

This is a core result from Denault (2001), which convince us with the existence

and uniqueness of a coherent allocation rule - Aumann-Shapley value.
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Example 1 \sensitivity" of SES�, is the �rst order derivative (or gradient, in ma-

trix language) of ES� with respect to the weights of the asset in the portfolio,

a = (a1; � � � ; an)0. Let us de�ne,

SESi�(a) =
@ES�
@ai

; i = 1; � � � ; n:

When ES� is employed as a cost function for the fuzzy games, SES�s are exactly the

Aumann-Shapley values in a linear portfolio setup by Theorem 1. Under certain con-

tinuity and di�erentiability conditions (see Tasche [55] and Scaillet [52]), the resulting

formula is

SESi�(a) = E[�Yij � a
0

Y > VaR�(a
0

Y )]; (4.1)

and the risk capital allocated to the ith asset is aiSES
i
�(a).

4.2 Suitable Allocation for Performance Measure-

ment

Suitable allocation approach by Tasche (2000) [55] is more or less sparked by the

so-called two parameter selection rules for the portfolio selection problems, as we

mentioned in the previous chapters. Remember that risk measure has a long history

of serving as one of the two parameters in the mean-risk (or return-risk) approaches,

during the earlier years of the research on decision under risk in the �nancial market.

Representative discussions include Markowitz-Tobin (1952, 1958) [40], Bawa (1976,
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1977, 1978) [11, 12, 13] MLPM functional rules (including Roy's SF rules), etc. Risk

measures in those setups are nothing but a nonlinear (especially, convex) condition for

the constraint optimization problems. Relating this to the utility theoretic discussion,

we can percept the investors' level of risk aversion as we discussed in the previous

chapters.

By imposing a subjective return function, as Tasche (2000) de�ned below, one

can talk about an optimal portfolio selection rule if the risk measure/risk capital is a

convex function of the shares of the assets in the portfolio. A suitable allocation for

performance measurement will naturally need to bear the characteristics sensitive to

diagnose/
ag the better performing asset. Thus, locally improving a certain amount

of the better performing asset should de�nitely improve the overall return rate (RO-

RAC). Given the above intuition, Tasche (2000) de�nes the \suitability" in a rather

general way, i.e. the risk measure does not have to be a coherent measure for this

\suitability" to hold. It is a local condition, instead of a global one in supporting the

unique solution to an optimization problem.

De�nition 8 Return Function

Let ; 6= U be a set in Rn and r : U �! R be some function on U . Fix any

m 2 Rn , then the function g : fu 2 U jr(u) 6= m
0

ug �! R, de�ned by

g(u) =
m

0

u

r(u)�m0u

is called return function for r.
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Return function incorporates both expected returns and required risk capitals of

the feasible portfolios. It assigns a ranking score to each portfolio u 2 U , for the

performance ranking purpose.

De�nition 9 Suitable Allocation for Performance Measurement

Let ; 6= U be a set in Rn and r : U �! R be some function on U . A vector �eld

a = (a1; � � � ; an) : U �! Rn is called suitable for performance measurement with r,

if it satis�es the following two conditions:

� For all m 2 Rn , u 2 U with r(u) 6= m
0

u and i 2 f1; � � � ; ng, if mir(u) >

ai(u)m
0

u, then there exists an � > 0, such that for all t 2 (0; �) we have

g(�te(i) + u) < g(u) < g(te(i) + u);

� For all m 2 Rn , u 2 U with r(u) 6= m
0

u and i 2 f1; � � � ; ng, if mir(u) <

ai(u)m
0

u, then there exists an � > 0, such that for all t 2 (0; �) we have

g(�te(i) + u) > g(u) > g(te(i) + u),

where e(i) 2 Rn denotes the ith canonical unit vector in each condition.

Theorem 2 Let ; 6= U � Rn be an open set and r : U �! R be a function that is

partially di�erentiable in U with continuous derivatives. Let a = (a1; � � � ; an) : U �!

Rn be a continuous vector. Then, a is suitable for performance measurement with r

if and only if

ai(u) =
@r(u)

@ui
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Proof: See Tasche (2000) [55] Theorem 4.4.

This is a core theorem showing that a suitable allocation formula is exactly a

coherent fuzzy value (or Aumann-Shapley value) by comparing both Theorem 2 and

Theorem 1, if the risk measure is a coherent one and with some di�erentiability

assumptions.

4.3 Related Findings

A list of �ndings related to the previous sections is as follows:

� Aumann (1964, 1975) [8, 9] shows that, in a market with so-called continuum

of traders, the core of such a market (exchange economy) coincides with the

set of its \equilibrium allocations", i.e., allocations induced by a competitive

equilibrium with an appropriate price structure. \Presumably, the results could

be extended to economies with production", by Aumann (1964), although a

serious mathematical proof on it has not been found in the literature.

� To follow up the portfolio selection problem related to the RORAC approach

mentioned in the previous section, asset pricing in a coherent risk measure

framework would be a natural extension on this topic. A starting point could

be asset pricing in an ES� framework. Since ES� is an aÆne transformation

of 1st order MLPM, it can be a special case of Harlow and Rao (1989) [31]'s

results which is asset pricing in a generalized MLPM framework. Since we are
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going to focus on the coherent risk management problems in this thesis, we will

leave it for future work.

� Should a single risk measure, such as ES�, be selected by the regulators? Or

would it be better if every �nancial �rm is allowed to use its own measure of

risk (from the spectral measures of risk generated by ES� or other coherent risk

measures)? We have heard enough criticism on both proposals, and we are not

going to answer questions like these in this dissertation.
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Part III

Statistical Theory
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Recall that the risk measures (VaR� and ES�) and the corresponding risk capital

allocations that we are focusing on here, are all de�ned in terms of statistics, such

as quantiles, moments or conditional moments of Pro�t/Loss (P/L). It is natural to

study the statistical properties of the random P/L, such as the density functions,

quantiles and moments etc. Given those statistical properties, we can carry out the

calculation of the risk measures and risk capital allocations easily. For instance, if

we know the PDF or CDF, we, for sure, can �nd the quantiles and the expectations

analytically or numerically.

In the real business, none of the quantities are observable and we do not know the

PDFs or CDFs, so feasible solutions must be based on inference from the observed

P/L data, and on both economic models and statistical models. Statistical models

will be our focus in this dissertation.

Estimating the joint P/L distribution, i.e. PDF or CDF, and the corresponding

quantiles and moments, can be non-trivial statistical problems. Back-testing3 is al-

ways necessary, in order to assess the model validity or the forecasting accuracy of

the statistical models proposed.

In Chapter 5, we will review the current statistical modeling methods for P/L

distribution: nonparametric, parametric, semi-parametric and semi-nonparametric

3We did not �nd a formal de�nition for it in the literature, since it is neither a statistical concept,
nor a pure economic one. In practice, this concept has been well accepted in risk management for
years. One sample de�nition from the American Stock Exchange is \The practice of applying a
valuation or forecasting model to historical data to help appraise the model's possible usefulness
when current and future data are used". We will discuss both back-testing and hypothesis testing
in Chapter 6.
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methods. We will discuss the corresponding estimators for ES� and sensitivity of

ES�. We also give analytic results based on parametric distributional assumptions:

multivariate t-distribution, two numerical estimators of which were proposed and

compared. In Chapter 6, we will review the current back-testing methods based on

VaR�, discuss their statistical properties, and modify the back-testing procedures

based on ES�. A class of test statistics based on ES� are proposed. Two typical test

statistics are tabulated. Asymptotic properties are discussed.

Throughout this part, we make the following assumptions.

Assumption 1 Loss Function

� a 2 A, choice vector belongs to a feasible set of portfolios A, satisfying imposed

requirements. For instance, we may consider portfolios only with non-negative

positions (short positions are not allowed).

� Y , random vector, random returns or risk factors, de�ned on a probability space

(
;A; P ).

� Z = f(a; Y ), loss function, which is continuous in a, and measurable in Y , and

that Efjf(a; Y )jg <1 for each a 2 A. A typical example is the so-called linear

portfolio

f(a; Y ) = a
0

Y;

Another example will be that

f(a; Y ) = a
0

g(Y; �);
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where g(Y; �) are vector functions, representing the random returns based on

the pricing formula if the prices are not observable, with Y as the vector of risk

factors and � as the vector of unknown parameters in the pricing formula. This

is often quoted as non-linear portfolio in the literature.



www.manaraa.com

42

Chapter 5

Statistical Modeling

The statistical modeling methods for P/L (or return) of portfolios, discussed in

the following chapters, fall into four categories: nonparametric, parametric, semi-

parametric and semi-nonparametric methods.

5.1 Nonparametric Methods

Without imposing any distributional assumption on the iid univariate sample of

Z, one can estimate quantiles by the empirical distribution F̂T ,

F̂T (z) =

PT
i=1 IfZi�zg
T

; z 2 R

where I is an indicator function.

By the Glivenko-Cantelli theorem, we know that with probability 1,

sup
z2R

jF̂T (z)� F (z)j ! 0; T !1
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Consequently, we estimate

z� = F (�) � inffz 2 R : F (z) � �g

by

ẑ�;T = F̂ T (�):

Let's de�ne the ordered sample by

Z1;T = max
0�t�T

fZtg � Z2;T � � � � � ZT;T = min
0�t�T

fZtg;

which are called order statistics. Then, for k = 1; � � � ; T ,

ẑ�;T = F̂ T (�) = Zk;T ; 1� k

T
< � � 1� k � 1

T

By the Central Limit Theorem (CLT), it is shown that

ẑ�;T � AN

�
z�;

�(1� �)

nf 2(z�)

�
(5.1)

where f(�) is a continuous density with f(z�) 6= 0 and k = k(n) so that n � k =

n� + o(n
1
2 ). Also, see Embrechts (1996) [25] for some details.

If Z represents the random P/L, then the nonparametric estimator for VaR� is

\VaR�(Z) = �ẑ�;T :

(5.1) can be used for sample size calculation, if a targeting accuracy is determined

for VaR�.
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Similarly, we have the following estimator1 for ES�(Z)

dES�(Z) = �
PT

t=1 ZtIfZt<ẑ�;T gPT
t=1 IfZt<ẑ�;T g

= �ẑ�;T +
PT

t=1(ẑ�;T � Zt)
+PT

t=1 IfZt<ẑ�;T g
: (5.2)

If\VaR�(Z) = c is �xed, or a known quantity, then

dES�(Z)jc � AN

�
ES�(Z);

�2(Z)

n�

�
: (5.3)

If\VaR�(Z) = �ẑ�;T is estimated from the empirical process, then

dES�(Z)jẑ�;T � AN

�
ES�(Z);

�2(Z)

n�

�
dES�(Z) = Eẑ�;T

 
�
PT

t=1 ZtIfZt<ẑ�;T gPT
t=1 IfZt<ẑ�;T g

jẑ�;T
!

(5.4)

(5.3) and (5.4) can be used for sample size calculation depending on the situations,

if a targeting accuracy is determined for ES�. (5.4) needs to be estimated to be

applicable to the real calculation.

Naturally, we have the following estimator for SESi� in a linear portfolio setup,

\SESi�(a) =

PT
t=1 Yi;tIfZt<ẑ�;T gPT
t=1 IfZt<ẑ�;T g

:

Remark 2 Again, the above estimators are consistent estimators of the VaR�, ES�

and SES� by the Law of Large Numbers and Slutsky's theorem.

The advantage of this method is that it is straightforward and easy to implement,

but it needs large sample size T to achieve accuracy, which can be partially illustrated

1Acerbi-Tasche (2002) [3] proposes limn!1

P[n�]
k=1

Zk;T

[n�] , to account for the discrete CDFs, which

is equivalent to the estimator here for the continuous cases.
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by the numerical examples furnished in the next section. Also, it follows from the

de�nition that the empirical CDF, F̂T , is not a continuous function. Continuity is

always a desirable property that we need for the calculation of quantiles and sensitivity

of ES. The kernel method is natural and o�ers smooth estimators. Moreover, it

allows for a broader class of data including dependent data satisfying strong mixing

conditions (see Doukhan (1994) [23]). Scaillet (2002) in [52] proposed and studied

the properties of an estimation method for ES� and its sensitivity, based on a kernel

approach. He also did simulation studies to compare parametric methods and semi-

parametric methods, with the proposed kernel methods.

Remark 3 Other Nonparametric Methods.

As Scaillet (2002) in [52] pointed out, other nonparametric approaches, like spline

methods, might be contemplated. We leave it as future work.

5.2 Parametric Methods

Classical distributional assumptions on Y seem to be violated all the time by

empirical evidence of �nancial data. Meanwhile, the linear relationship of the port-

folio weights and risk factors seems too simple to explain an arbitrary portfolio.

Researchers try to generalize both the distributional assumptions on the P/L and re-

strictions on the loss functions. VaR� for linear portfolios under student t-distribution

is considered in the working papers by Albensese, Levin etc. Glasserman et. al (2002)
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in [30] proposes methods to compute the so-called \� �� VaR�", for heavy-tailed

non-linear portfolios, with focus on multivariate t-distribution. Kamdem (2004) in

[34] generalizes the parametric linear portfolio methods to the elliptical distribution

families, with special attention to multivariate t-distribution, which is very similar to

our results under a totally independent regime.

The corresponding conditional CDF, PDF and VaR� and/or ES� are studied more

or less along this line of research, but none of them ever considered SES�. There are

a few reasons why SES� is under-addressed in the literature. First of all, research

in risk measures are ongoing and puzzles remain to be solved. Comparing to risk

measures, risk capital allocation seems a secondary problem. Secondly, the idea of

coherent allocation is largely motivated by the idea of coherent risk measure recently,

so that it does not catch enough attention yet. Thirdly, risk capital allocation meets

the business needs of internal performance measurement, while risk capital calculation

is more or less a�ected by the banking regulation, which always has a stronger signal

directing the researchers, especially the industrial researchers. In this thesis, we try

to consider SES� whenever it is possible.

The elliptical distributional family will be revisited in this section. Special at-

tention is given to multivariate t-distribution, while both Multivariate Gaussian and

multivariate t-distribution are discussed as two special cases in this family. We keep

the loss function linear, i.e.

f(a; Y ) = a
0

Y;
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where Y can be viewed as price di�erence between the current value of the portfolio

and an uncertain value of the portfolio at the next period, for instance.

5.2.1 Multivariate Gaussian

The classical assumption on Y is that Y � N(�;�) (see [40]), where � and � are

either known or unknown parameters that need to be estimated. There are many

ways of estimating � and �, depending on the data quality. For example, Maximum

Likelihood Estimators (MLE) or Moment Methods (MM) could be employed if we

have enough iid samples of Y. If we don't have enough samples, we have to impose

structures on � or on �, and then estimate the structured models by using MLE, MM

or Generalized Moment method (GMM), and so on.

Once we know �, � or their feasible estimators (�̂, �̂), we can calculate ES�(Z)

or its estimators. Notice that

Z � N(�Z ; �
2
Z);

where �Z = a
0

�, and �2Z = a
0

�a, so we have

ES�(Z) = E [�Z j � Z > VaR�(Z)] ;

where

VaR�(Z) = ��Z � �Z�
�1(�):
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Figure 5.1: Graphical illustration of VaR�.

Let us �rst �nd out the conditional CDF and conditional PDF,

F (tj � Z > VaR�(Z)) = P (�Z � tj � Z > VaR�(Z))

=
P (VaR�(Z) < �Z � t)

P (�Z > VaR�(Z))

=
1

�
P

�
VaR�(Z) + �Z

�Z
<
�Z + �Z

�Z
� t+ �Z

�Z

�

=
1

�

�
�

�
t+ �Z
�Z

�
� �

�
VaR�(Z) + �Z

�Z

��
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Thus,

f(tjVaR�(Z)) =
1

��Z
�

�
t+ �Z
�Z

�

where t > VaR�(Z), � and � are CDF and PDF of standard Gaussian random

variables respectively.

Now, let's look at the expected shortfall,

ES�(Z) = E[�Zj � Z � VaR�(Z) > 0]

=

Z 1
VaR�(Z)

tf(tjVaR�(Z))dt

=
1

��Z

Z 1
VaR�(Z)

t�

�
t+ �Z
�Z

�
dt

= ��Z + �Z

�
p
2�

exp

�
� [��1(�)]2

2

�
: (5.5)

We denote the sensitivity of ES� by SES� or KAS
i (Aumann-Shapley value, see

[22] for details). Thus, the corresponding SES�s are

KAS
i = SESi�(a) = ��i + a

0

�i

�
p
2��2Z

exp

�
� [��1(�)]2

2

�
; i = 1; � � � ; n; (5.6)

where �i is the i
th element of � and �i is the i

th column of �.

Scaillet (2002) [52] gives some similar results.
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5.2.2 Multivariate t-distribution

Multivariate t When the P/L exhibits the symmetric fat-tailed property, mul-

tivariate t(�;�; v) family can be very useful to accommodate this with the extra

freedom of v, which is a natural generalization of multivariate Gaussian assumption.

Assuming Y � t(�;�; v), we will give analytic solutions for VaR�, ES� and SES� of

Z. Without losing generality, we assume � = 0.

Recall that Z = a
0

Y and � = 0, so we have

Z � t(0; a
0

�a; v):

Thus

VaR�(Z) =
p
a0�aVaR�(tv) � �0; (5.7)

ES�(Z) = E(�Zj � Z � �0)

=
p
a0�aE

�
�tvj � tv � �0p

a0�a

�

=
p
a0�a

Z 1
�0p
a
0
�a

t
1

�
ftv(t)dt
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=
p
a0�a

v�((v + 1)=2)

2��(v=2)
p
v�

Z 1
�0p
a
0
�a

(1 + v�1t2)�
v+1
2 d(1 + v�1t2)

=

8>>><>>>:
p
a0�a v�((v+1)=2)

2��(v=2)
p
v�

2
1�v (1 + v�1t2)

1�v
2

���1
�0p
a
0
�a

when v � 2;

1 when v = 1

=

8>><>>:
1

�(v�1)
�((v+1)=2)

�(v=2)

q
a0�av
�

�
1 +

�20
va0�a

� 1�v
2

; when v � 2;

1 when v = 1

(5.8)

since

Pr(�tv � tj � tv � �0p
a0�a

) = F

�
tj � tv � �0p

a0�a

�
=

1

�

�
Ftv(t)� Ftv

�
�0p
a0�a

��

and

f

�
tj � tv � �0p

a0�a

�
=

1

�
ftv(t):

By de�nition, we know

�20
a0�a

� [VaR�(tv)]
2;

thus,
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ES�(Z) =

8>><>>:
1

�(v�1)
�((v+1)=2)

�(v=2)

q
a0�av
�

�
1 + [VaR�(tv)]2

v

� 1�v
2

; when v � 2;

1 when v = 1

(5.9)

and

KAS
i = SESi�(a) =

8>><>>:
1

�(v�1)
�((v+1)=2)

�(v=2)

p
v

�a0�a

�
1 + [VaR�(tv)]2

v

� 1�v
2

a
0

�i; when v � 2;

1 when v = 1

(5.10)

Remark 4 Proportional Invariance

As you may notice, the proportion of KAS
i over ES�(Z), which is the proportion

of the institution's risk capital allocated to its ith business unit, is invariant for the

multivariate t-distribution and multivariate Gaussian distribution families, given the

same dispersion matrix � and allocation parameter a with mean � = 0, i.e.

SESi�(a)

ES�

���� a;� =
a
0

�i
a0�a

;

This capital allocations strategy has been proposed for the Gaussian families. As

we may notice, we can extend its usefulness to other elliptical families. Multivariate

t-distribution is certainly one example serving such a purpose. We will show that

this invariance holds good for a general elliptical family in the later discussions on

elliptical families.
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Notice that this invariance works only when mean � = 0. In the case of non-zero

mean elliptical family, there is no such relationship.

Numerical Examples When an analytic capital allocation formula is infeasible

for a more general case, a numerical solution by Monte Carlo simulation would be

an option. We will illustrate the basic idea by using the following two Monte Carlo

simulation methods for the multivariate t-distribution.

Example 2 Naive Monte Carlo Simulation We simulate bivariate-t with degree of

freedom v = 1; 2; 3; 5; 20; 100, correlation 
 = �0:7;�0:3; 0; 0:3; 0:7; 0:9; 1, �1 : �2 =

1; 2; 4, by Monte Carlo Simulations.

Based on a standard univariate Normal random number generator, we can gener-

ate bivariate Normal (0;�) in the following steps:

� Covariance matrix � can be decomposed into the following form:

� = DRDT ;

where D = diag(�1; �2) and set �2 = 1 for convenience; R is the correlation

matrix.

� R
1
2 can be obtained by Cholesky decomposition, given R positive de�nite as a

correlation matrix. Or denoted by L,

R = LLT = R
1
2R

1
2
T
:
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Thus,

L = R
1
2 =

2664 (1� 
2)1=2 


0 1

3775 :
� Generate independent random vectors Xn = (X1;n; X2;n)

T from two standard

Normal distributions independently , with sample size s = 105 2, i.e. n =

1; � � � ; 105.

� Transfer the computer-generated random vectors, Xn, to new vectors called

Kn = (K1;n; K2;n)
T , by

Kn = DLXn; for n = 1; � � � ; s:

By construction we know that Kn's are random samples of bivariate Normal

(0;�).

Next, we generate s random samples of �2v, denoted by �
2
v;1; � � � ; �2v;105 . Each of the

random samples is the summation of v independent �21's, each of which is essentially

the square of a random number from the standard Normal generator.

Thus the random samples of bivariate-t, denoted by Tn = (T1;n; T2;n)
T , with sample

size s, is

Tn =

r
v

�2v;n
Kn; n = 1; � � � ; s:

2For the time being, we �x the sample size. This sample size should roughly give us one digit
accuracy, 95% of the chance, for the VaR� based on (5.1). A sample size calculation can be ful�lled
by (5.1), (5.3) or (5.4) based on the targeting precision.
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Consider the simplest portfolio Z with two assets and the allocation vector a =

(1; 1)T .

Z = aTT = T1 + T2;

with T � t (0;�; v). So

Zj�2v � N(0; �2Zj�2v);

with �2Zj�2v = aT�a v
�2v
. We will use the nonparametric formula developed in the

previous section, (5.2) and (??), for this simulation study.

The naive simulation results for ES� and SES� are summarized in the following

tables:
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Table 5.1: VaR�; ES�, and SES1
� of Bivariate-t - Naive Simulation vs Ana-

lytic Solution. Empirical estimation based on sample size = 105, � = 0:05, �1 = 1
with parameters corr = 
, �2, df = 2 speci�ed in the table.

Naive Simulation vs Analytic Solution

df 
 �2 VaR� ES� SES1
� VaR� ES� SES1

�

2 -0.9 1 2.82702 7.11876 3.35048 1.30586 2.75681 1.37841
2 4.83713 11.51646 0.76384 3.45497 7.29383 -4.16791
4 10.20423 23.46255 -0.58342 9.14100 19.29767 -5.11979

-0.7 1 3.38093 7.81721 3.69541 2.26181 4.77494 2.38747
2 5.48056 12.43721 1.88603 4.33104 9.14330 -1.66242
4 10.59547 23.68708 -0.00877 9.85900 20.81346 -3.28634

-0.3 1 4.10647 8.50414 4.34927 3.45497 7.29383 3.64692
2 6.32773 12.88704 2.40955 5.69210 12.01666 1.26491
4 11.72435 24.81110 1.27985 11.15725 23.55419 -0.32266

0.0 1 4.58684 8.98488 4.51464 4.12948 8.71780 4.35890
2 6.90351 14.03528 3.18383 6.52929 13.78405 2.75681
4 12.41771 26.89350 2.48252 12.03941 25.41653 1.49509

0.3 1 4.88248 9.57295 4.80503 4.70834 9.93982 4.96991
2 7.56035 14.64409 4.08626 7.27071 15.34927 3.96110
4 13.12461 26.96529 3.09080 12.86120 27.15143 3.07903

0.7 1 5.51755 10.36205 5.11979 5.38419 11.36662 5.68331
2 8.27827 15.65736 4.38732 8.15508 17.21627 5.29731
4 13.91033 27.57889 4.06255 13.88145 29.30529 4.92744

0.9 1 5.80718 11.30743 5.80076 5.69210 12.01666 6.00833
2 8.65141 15.94276 4.78300 8.56308 18.07761 5.88573
4 14.34322 27.92321 4.04436 14.36443 30.32491 5.76424

1.0 1 5.88662 10.57245 5.34716 5.83997 12.32883 6.16441
2 8.71044 16.29826 5.26095 8.75996 18.49324 6.16441
4 14.54384 28.64696 4.39694 14.59993 30.82207 6.16441
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Table 5.2: VaR�; ES�, and SES1
� of Bivariate-t - Naive Simulation vs Ana-

lytic Solution. Empirical estimation based on sample size = 105, � = 0:05, �1 = 1
with parameters corr = 
, �2, df = 5 speci�ed in the table.

Naive Simulation vs Analytic Solution

df 
 �2 VaR� ES� SES1
� VaR� ES� SES1

�

5 -0.9 1 1.29345 2.04515 1.037508 0.90116 1.29251 0.646253
2 2.64554 4.14844 -1.129877 2.38424 3.41965 -1.954084
4 6.54200 9.84666 -1.632288 6.30810 9.04754 -2.400367

-0.7 1 1.79362 2.60518 1.316703 1.56085 2.23868 1.119342
2 3.18709 4.71309 -0.447564 2.98880 4.28675 -0.779410
4 6.97105 10.28833 -1.102782 6.80359 9.75820 -1.540768

-0.3 1 2.48902 3.46490 1.759983 2.38424 3.41965 1.709823
2 4.00908 5.70013 0.580196 3.92805 5.63390 0.593042
4 7.71940 11.02925 -0.100075 7.69949 11.04317 -0.151276

0.0 1 2.91922 3.98875 1.977382 2.84971 4.08726 2.043630
2 4.57484 6.34587 1.186806 4.50579 6.46253 1.292505
4 8.39640 12.00963 0.528878 8.30826 11.91631 0.700959

0.3 1 3.27174 4.48406 2.228702 3.24917 4.66019 2.330097
2 5.05244 7.00123 1.633988 5.01743 7.19636 1.857126
4 8.90957 12.58639 1.136527 8.87537 12.72970 1.443574

0.7 1 3.71114 5.06174 2.514974 3.71557 5.32914 2.664567
2 5.62383 7.74599 2.209218 5.62772 8.07169 2.483597
4 9.48709 13.26037 1.891794 9.57943 13.73952 2.310184

0.9 1 3.88742 5.27771 2.626265 3.92805 5.63390 2.816949
2 5.82114 8.00815 2.443764 5.90928 8.47552 2.759472
4 9.79349 13.67108 2.265169 9.91273 14.21756 2.702511

1.0 1 3.97507 5.39705 2.684645 4.03010 5.78026 2.890129
2 5.97345 8.17806 2.553336 6.04515 8.67039 2.890129
4 9.97166 13.91291 2.425069 10.07524 14.45065 2.890129
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Table 5.3: VaR�; ES�, and SES1
� of Bivariate-t - Naive Simulation vs Ana-

lytic Solution. Empirical estimation based on sample size = 105, � = 0:05, �1 = 1
with parameters corr = 
, �2, df = 20 speci�ed in the table.

Naive Simulation vs Analytic Solution

df 
 �2 VaR� ES� SES1
� VaR� ES� SES1

�

20 -0.9 1 0.853394 1.114224 0.558604 0.771317 0.993630 0.496815
2 2.100403 2.831680 -1.351137 2.040714 2.628899 -1.502228
4 5.422632 7.118274 -1.675602 5.399222 6.955413 -1.845314

-0.7 1 1.375782 1.761377 0.898356 1.335961 1.721018 0.860509
2 2.593318 3.380344 -0.581433 2.558171 3.295499 -0.599182
4 5.836389 7.642724 -1.106875 5.823319 7.501745 -1.184486

-0.3 1 2.055897 2.623281 1.319540 2.040714 2.628899 1.314449
2 3.389919 4.351740 0.428904 3.362095 4.331134 0.455909
4 6.596714 8.509006 -0.142986 6.590139 8.489582 -0.1162956

0.0 1 2.439581 3.116013 1.564941 2.439120 3.142135 1.571068
2 3.868815 4.961395 0.942733 3.856587 4.968152 0.993630
4 7.129247 9.188534 0.480545 7.111195 9.160820 0.538872

0.3 1 2.789031 3.544602 1.761537 2.781025 3.582585 1.791293
2 4.299005 5.517483 1.365590 4.294514 5.532300 1.427690
4 7.609010 9.797629 1.038416 7.596596 9.786124 1.109767

0.7 1 3.172202 4.045928 2.021936 3.180223 4.096843 2.048421
2 4.798645 6.127796 1.839591 4.816876 6.205220 1.909298
4 8.161366 10.479750 1.668947 8.199217 10.562440 1.775985

0.9 1 3.344419 4.274013 2.133355 3.362095 4.331134 2.165567
2 5.050745 6.443723 2.056111 5.057867 6.515670 2.121381
4 8.455688 10.822150 1.973010 8.484492 10.929930 2.077591

1.0 1 3.429921 4.364765 2.179136 3.449436 4.443650 2.221825
2 5.133964 6.561685 2.156548 5.174155 6.665475 2.221825
4 8.590916 11.009510 2.126935 8.623591 11.109130 2.221825
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Table 5.4: VaR�; ES�, and SES1
� of Bivariate-t - Naive Simulation vs Ana-

lytic Solution. Empirical estimation based on sample size = 105, � = 0:05, �1 = 1
with parameters corr = 
, �2, df = 100 speci�ed in the table.

Naive Simulation vs Analytic Solution

df 
 �2 VaR� ES� SES1
� VaR� ES� SES1

�

100 -0.9 1 0.757838 0.961644 0.480384 0.742479 0.935835 0.467917
2 1.977907 2.518946 -1.393556 1.964416 2.475986 -1.414849
4 5.185186 6.567978 -1.724627 5.197356 6.550843 -1.737979

-0.7 1 1.295618 1.633379 0.842846 1.286012 1.620913 0.810457
2 2.474370 3.133913 -0.565497 2.462525 3.103813 -0.564330
4 5.611616 7.113155 -1.117617 5.605596 7.065397 -1.115589

-0.3 1 1.972478 2.486291 1.263070 1.964416 2.475986 1.237993
2 3.246317 4.102897 0.422296 3.236393 4.079209 0.429390
4 6.354220 8.038726 -0.130398 6.343746 7.995775 -0.109531

0.0 1 2.350950 2.963797 1.483654 2.347926 2.959369 1.479685
2 3.725140 4.704259 0.923139 3.712397 4.679174 0.935835
4 6.837930 8.650717 0.485829 6.845321 8.627970 0.507528

0.3 1 2.684601 3.378638 1.684791 2.677047 3.374200 1.687100
2 4.129657 5.206411 1.329709 4.133950 5.210507 1.344647
4 7.288198 9.224603 1.007975 7.312574 9.216903 1.045216

0.7 1 3.064494 3.865036 1.928132 3.061321 3.858545 1.929273
2 4.639251 5.845365 1.783768 4.636782 5.844286 1.798242
4 7.883717 9.969116 1.646972 7.892664 9.948060 1.672683

0.9 1 3.229999 4.082028 2.035925 3.236393 4.079209 2.039604
2 4.858529 6.123875 1.980229 4.868763 6.136679 1.997988
4 8.148111 10.312080 1.934722 8.167273 10.294180 1.956745

1.0 1 3.312290 4.184024 2.091375 3.320469 4.185180 2.092590
2 4.959696 6.274408 2.086203 4.980703 6.277770 2.092590
4 8.277086 10.479860 2.081550 8.301172 10.462950 2.092590
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The above simulation study based on a sample size of 105 shows that the naive

simulation tend to overestimate VaR�, ES� and SES� when 
 is negative, and to

underestimate them when 
 increases. The precision seems increasing with the degree

of freedom by comparing the four tables. In general, we will need a bigger sample

size to achieve a more precise result for this naive simulation with the empirical

estimation.

Example 3 Accelerated Monte Carlo Simulation When computational resource is

limited, an accelerated simulation method is in demand. There are various kinds

of accelerated methods in the computing literature. We will give one example to

illustrate the basic idea.

� = E(If�Z��g)

= E�2v [E(If�Z��gj�2v)]:

(5.11)
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Consider

E(If�Z��gj�2v) = P (Z � ��j�2v = c)

= P

 
Zp

aT�av=c
� ��p

aT�av=c
j�2v = c

!

= �

 
��p

aT�av=c
j�2v = c

!
(5.12)

Thus, an estimator of VaR�, �N , can be decided by solving the following equation
3

for �:

FN (�) � 1

N

NX
n=0

�

0@ ��q
aT�av=�2v;n

1A = �

(5.13)

where �2v;n are random samples of �2v, with known v. We know that

FN (�N) � �:

Since

FN+1(�) =
N

N + 1
FN(�) +

1

N + 1
�

0@ ��q
aT�av=�2v;N+1

1A ;

3We use equal weighting here as an example for simplicity. We can also use other weighting
mechanisms, such as Kernel method or �2

v
weighting.
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and

FN+1(�N+1) � �

we know that

FN+1(�N) =
N

N + 1
�+

1

N + 1
�

0@ ��Nq
aT�av=�2v;N+1

1A

Thus,

FN+1(�N+1)� FN+1(�N) = F
0

N+1(�N)(�N+1 � �N) + o(j�N+1 � �N j)

�� N
N+1

�� 1
N+1

�

�
��Np

aT�av=�2v;N+1

�
= F

0

N+1(�N)(�N+1 � �N) + o(j�N+1 � �N j)

1
N+1

[�� �

�
��Np

aT�av=�2v;N+1

�
] = F

0

N+1(�N)(�N+1 � �N) + o(j�N+1 � �N j)

�N+1 = �N + 1
N+1

���
 

��Np
aT�av=�2

v;N+1

!

F
0

N+1(�N )
+ o(j�N+1 � �N j)

(5.14)

for N = 0; 1; � � � ; s:

Notice that we have to assume F
0

N+1(�N) 6= 0 to make (5.14) work. This assump-

tion is also critical to the following discussion on the asymptotic properties of FN

and �N . However, this condition holds, by the de�nition of FN(�), (5.13). Further,
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in order to smooth our later discussion, we assume there exists M 2 R+ , such that

jF 0

N+1(�N)j > M almost surely, for any N .

We will use the iterative steps to �nd �N ,

�N+1 = �N +
1

N + 1

�� �

�
��Np

aT�av=�2v;N+1

�
F
0

N+1(�N)

(5.15)

and we will stop at the step where the target accuracy is achieved, i.e.

� �N+1 is close enough to �1, where �1 is the true VaR� i.e. FN(�)
N!1�! F1(�)

for any � and F1(�1) � �. This is almost infeasible, when nothing is known

about the true VaR� before hand.

� �N+1 is close enough to �N . In our case, the stopping rule is even easier. Since

it is not diÆcult to show that

�� �(x)

F
0

N+1(�N)
� max(�; 1� �)

M
;

for some M 2 R+ and any x 2 R, i.e.

j�N+1 � �N j � max(�; 1� �)

M

1

N + 1
:

So it is suÆce to set any N � max(�;1��)
�M

� 1 for a pre-speci�ed � 2 R+ by the

risk managers.

� F1(�N) falls into the speci�ed con�dence interval for �.
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Any of the above criteria could be reasonable to decide the sample size. It is up

to the risk manager to choose. As you may notice, � is in the dollar amount, while

F1(�N) is a scale free quantity, probability of loss exceed �N .

In order to make the stopping rules explicit, we will discuss the asymptotic prop-

erties of FN(�) and �N in the following paragraphs.

By construction and the combined results from (5.11) and (5.12), we know that

FN(�) is an unbiased estimator of E�2v [E(If�Z��gj�2v)] for any � 2 R, since

E[FN(�)] =
1

N

NX
n=0

E

24�
0@ ��q

aT�av=�2v;n

1A35

= E

"
�

 
��p

aT�av=�2v

!#
:

If the variance of �

�
��p

aT�av=�2v

�
exists, then, by Central Limit Theorem,

p
N

(
FN (�)� E

"
�

 
��p

aT�av=�2v

!#)
D�! N

 
0;Var

"
�

 
��p

aT�av=�2v

!#!
(5.16)

for any � 2 R.
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Then,

� � FN(�N) = FN(�1) + F
0

N(�1)(�N � �1) + o(j�N � �1j)

=) �N � �1 =
�� FN (�1)
F
0

N(�1)
+ o(j�N � �1j)

By the Slutsky theorem, the Central Limit Theorem and (5.16), we know that

p
N(�N � �1)

D�! N

0BB@0; Var
�
�

�
��1p
aT�av=�2v

��
(F 0

1(�1))2

1CCA
(5.17)

where �1 = VaR� and

F
0

1(�1) = E

"
�

 
��1p

aT�av=�2v

!
1p

aT�av=�2v

#
Given the con�dence level � = 0:05, the con�dence interval for �1 is

266664�N � z�=2

vuuutVar

�
�

�
��1p
aT�av=�2v

��
N(F 0

1(�1))2
; �N + z�=2

vuuutVar

�
�

�
��1p
aT�av=�2v

��
N(F 0

1(�1))2

377775
By the Delta method, we know that

p
N [F1(�N)� F1(�1)]

D�! N

 
0;Var

"
�

 
��1p

aT�av=�2v

!#!
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where F1(�1) = �, i.e.

p
N [F1(�N )� �]

D�! N

 
0;Var

"
�

 
��1p

aT�av=�2v

!#!
:

Given the con�dence level � = 0:05, the con�dence interval for F1(�N) is

24�� z�=2

vuutVar

"
�

 
��1p

aT�av=�2v

!#
=N; �+ z�=2

vuutVar

"
�

 
��1p

aT�av=�2v

!#
=N

35
Do we know �1 and F1? The answer is yes, since for the multivariate t-

distribution �1 is known due to the formula (5.7), and thus F1 is just a probability

that the loss is larger than �1.

Once �N is decided, ES� and SES� can be estimated either by the empirical

estimation or by the parametric formula.

5.2.3 Elliptical Family

Both multivariate Gaussian and multivariate t-distribution are special cases of the

elliptical family. To be consistent with Anderson (1993) [4], we de�ne the elliptical

family by Y � Eln(�;�; h), with density function of the form

j�j� 1
2hn((y � �)

0

��1(y � �));

where hn satis�es Z 1
0

�
n
2

�(n
2
)
�

n
2
�1hn(�)d� = 1:
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By theory, we know that any linear combination of an elliptically distributed

random vector is elliptical, i.e.

Z = a
0

Y � Eln(a
0

�; a
0

�a; h):

Thus,

VaR�(Z) = �a0�+ qh�;n
p
a0�a;

with qh�;n the VaR�(Eln(0; I; h)); and

ES� = �a0�+Kh
ES

p
a0�a;

SESi� = ��i +Kh
ES

a
0

�ip
a0�a

;

with Kh
ES the ES�(Eln(0; I; h)). Some special cases of the elliptical family have

analytic expression for qh�;n and K
h
ES, such as multivariate Gaussian and Multivariate

t-distribution, but some not, depending the function h.

As an example, s = qh�;n can be a unique positive solution to the equation by

Kamdem (2004) [34]

� =
�

n�1
2

�
�
n�1
2

� Z �1
s

Z +1

z2
(x� z2)

n�3
2 h(x)dxdz;

and

Kh
ES =

�
n�1
2

��
�
n+1
2

� Z 1
(qh�;n)

2

(x� (qh�;n)
2)

n�1
2 h(x)dx:
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5.3 Semi-parametric Methods

Since VaR�, ES� and SES� are all about the tail properties of the P/L distribu-

tions, it is natural to model P/L distributions by using the so-called semi-parametric

approaches, in the sense that a full parametric model (Generalized Pareto Distribu-

tion or GPD, for instance, see [52]) is used to model the tail of the distribution, with

the rest unspeci�ed or partially speci�ed.

A 
exible model is based on a so-called point process characterization, resulting in

Peak Over Threshold (POT) methods, which considers exceedances over a threshold

�. Mathematical theory (see Leadbetter (1991)) supports the condition of a possi-

bly inhomogeneous Poisson process with intensity � for the number of exceedances

combined with independent excesses W = Y � � over the threshold with � given.

W � GPD (�; �; �), Generalized Pareto Distribution (GPD) with location parameter

�, scale parameter � and shape parameter �. See [32] for detailed investigation of

estimation methods for the GPD. Scaillet (2002) [52] �tted GPD to the data above

threshold by a method of moments (MM), in the case when threshold � is known.

The smoothing extreme value method �tted by penalized log-likelihood was pro-

posed by Chavez-Demoulin and Embrechts (2001) in [18].

Remark 5 Relevant Research along This Line.

McNeil (1997) in [41] summarized the relevant EVT theoretical results and pro-

vided an extensive example of their application to Danish data on large �re insurance
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losses.

5.4 Semi-nonparametric Methods

Semi-nonparametric method (SNP) naturally seems to be another alternative to

o�er smooth estimators. Gallant and Nychka (1987) in [29] o�ered a feasible way to

estimate P/L densities and their moments, derivatives and integrals. We will propose

a SNP approach for the purpose of estimating ES� and its sensitivity. We leave this

for future work.
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Chapter 6

Back-testing

Financial institutions have extensively increased their use of statistical/econometrics

models to manage their market risk exposure over the past decades, partially because

of their increased trading activities, increased emphasis on RAROC and advances in

both the theoretical and empirical research. Financial regulators also have begun to

focus on the use of such models by regulated institutions.

Beginning in 1998, U.S. commercial banks may determine their regulatory eco-

nomic/risk capital for �nancial market risk exposure using VaR� models, i.e., models

of the time-varying distributions of portfolio returns. VaR� estimates are forecasts

of the maximum portfolio loss that could occur over a given holding period with a

speci�ed con�dence level �1, while ES� estimates are forecast of the average port-

folio loss given that the loss is no less than the threshold of VaR�, over the same

1The term \con�dence level" here is used synonymously with \probability", instead of the widely
used term in statistics. It sounds ambiguous, but we hope readers can identify this di�erence in
di�erent contexts.
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given holding period. Under the amended capital rules, regulated banks' market risk

capital charges can be based on the VaR� estimates generated by their own VaR�

models. From our previous discussion, we know that ES� is a coherent risk measure

while VaR� is not, for the purpose of calculating capital charges.

Given the importance of VaR� estimates to the banks and their regulators, evalu-

ating the model validity or forecast accuracy is always necessary. A variety of model

selection methods or testing methods can be found in econometrics and statistics lit-

eratures to evaluate models. Di�erent methods can be utilized to access the models

from di�erent perspectives. As Lopez (1999) in [35] pointed out, regulatory evaluation

di�ers from institutional evaluations, because:

1. The goal of regulatory evaluation of models is to assure that suÆcient risk

capital is available to prevent an institution from a big portfolio losses, which

may not be shared by an institutional evaluation due to issues of moral hazard.

2. Regulators generally can not evaluate every component of the model and its

implementation as well as the originating institution can, although they are

allowed to acquire the details of an institution's model.

3. Comparable evaluations across institutions are more desirable to regulators than

to institutions.

For �nancial risk models, \Back-testing" is a process of comparing daily, monthly,

quarterly or yearly pro�ts and losses with model-generated risk measures to gauge the
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quality and accuracy of the institutions' internal risk measurement systems. In this

evaluation process, the detection of the under-estimated risk measurement systems

is always the main interest, since an over-estimated risk measurement system tends

to be a conservative system which will not unstabilized the whole economy. When a

reasonable hypothesis about the interested quantities - risk measures, such as VaR�

and ES� - can be established, statistical hypothesis testing can be a very useful

framework to validate the models. We will be focusing on the hypothesis testing

methods that are potentially suitable as regulatory approaches to validate ES� models

in this dissertation, although other approaches might be appropriate as well.

6.1 Hypothesis Testing

6.1.1 Hypothesis Testing based on VaR�

Three hypothesis-testing methods based on VaR� are available to regulators (see

Lopez, 1997, [35] for a review): the binomial method, the interval forecast method

(see Christo�ersen, 1998, [19]), and the distribution forecast method.

The back-testing discussion will be based on the following assumptions,

Assumption 2 Back-testing

� Zt: portfolio value at time t in dollar terms, and de�ne zt = lnZt,

� �t+k = zt+k � zt: k-period-ahead return in percentage, a random variable with
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continuous true PDF ft+k, and CDF Ft+k. �t+ks are log returns of the particular

asset, i.e. �t+k = ln Zt+k
Zt

. In order to distinguish the forecasted log returns from

the observed log returns, we will use the unbolded f�tg's for the observed values.

� 
t: information available at time t, which typically includes, but is not limited

to, the entire history of the time series of the log returns up to �t.

� �t+kj
t � ft+k;t, where ft+k;t
2 is the conditional PDF of �t+k given information


t and Ft+k;t is the corresponding conditional CDF,

� k: holding period, k = 1, or 10, is the typical case,

� �: con�dence level, � = 1% or 5%, is the typical case,

� VaRt�(�t+k) = F t+k;t(�): VaR� expressed in percentage,

� Zt(1� expfVaR�(�t+k)g): VaR� expressed in dollar,

� ESt�(�t+k) =
1
�

R �
0
V aR�(�t+k)d�: ES� expressed in percentage,

� Zt(1� expfES�(�t+k)g): ES� expressed in dollar,

� T : sample size3, T = 250 is the typical case, i.e. one trading year.

The current available approaches are,

2It is assumed continuous for the time being in order to avoid the diÆculty in de�ning the ES�
later.

3Sample size T is for estimation, and T + k for back-testing.
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1. Binomial Method: Based on the null hypothesis that the VaR� estimates are

accurate against the alternative that they are not, in the sense that the uncon-

ditional coverage is at least � ,

H0 : E(It(�)) � � vs Ha : E(It(�)) > �:

where

It(�) =

8>><>>:
1 when ��t+kj
t � VaR�(�t+k),

0 when ��t+kj
t < VaR�(�t+k).

t = 1; � � � ; T:

Notice that if the VaR� estimates are accurate in all sense,

It(�)
iid� Bernoulli(�); t = 1; � � � ; T:

thus a Wald test, Score test or a likelihood Ratio test (exact or asymptotic) can

be appropriate.

2. Interval Forecast Method: Interval forecast methods are proposed to check

both the conditional coverage and unconditional coverage (or dependence Het-

eroscedasticity), aiming to diagnose the clustered outliers. See Christo�ersen

(1998) [19] for details.

3. Distribution Forecast Method: The so-called Kuiper statistics (see Kupiec (1995)

[36] for details) or Kolmogorov-Smirno� Test based on the transformation de-

�ned by Rosenblatt (1952) in [46].
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6.1.2 Hypothesis Testing Based on ES�

Next, we will propose a test procedure based on the ES� transformed through

the null CDF, opposing to the methods based on VaR�. Our motivation is that the

accuracy of the forecasted magnitude of large losses is of particular interest to both

the �nancial institutions and regulators. They don't want to reject a model that

forecast the conditional/unconditional ES� well, but fail to match the small day-to-

day moves that characterize the interior of the forecast. Rosenblatt (1952) in [46]

plays an important role in constructing the test statistics as in Kupiec (1995) [36].

Proposed Test Statistics and Two Examples

The hypothesis testing idea is as follows,

� Ft+k;t; t = 1; � � � ; T are the forecasted conditional CDFs of �t+k, based on the

historical data, such as historical log returns. f�t+kgTt=1 are observed log returns.

� Null hypothesis is that Ft+k;ts' are the accurate (or true) conditional CDFs for

�t+k, then by the argument of Rosenblatt (1952) in [46],


t+k � Ft+k;t(�t+k)
iid� Uniform(0; 1); 8t = 1; � � � ; T;
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� Test statistic that we propose,

X�
T;W =

1

�

Z �

0

F̂W
T (z)dz

=
1

T�

TX
t=1

(W (�)�W (
t+k))
+; (6.1)

where

F̂W
T (z) = w(z)

1

T

TX
t=1

IfW (
t+k)�W (z)g;

a empirical cumulative distribution function (ECDF) of 
 with a scaling/weighting

function w(�) = W
0

(�) � 0. X+ = max(X; 0). Notice that W (�) is re-

quired to be a monotone non-decreasing function with jW (x)j <1, x 2 [0; �].

(W (�)�W (
t+k))
+ 's are independent and identical distributed (iid) under the

null hypothesis.

� By playing with di�erent weighting functions, we can put di�erent weights on

the tails. We are going give two simple weighting functions later, and discuss

the properties of the corresponding test statistics.

� Rules of the test: When the alternative hypothesis is

Ha : Ft+k;ts are under-estimated in tails;

we reject the hypothesis if X�
T;W > c�, where c� is some critical value with an

con�dence level � 2 (0; 1):
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When the alternative hypothesis is

Ha : Ft+k;ts are over-estimated in tails;

we reject the hypothesis if X�
T;W < c�, where c� is some critical value with an

con�dence level � 2 (0; 1):

Equal Weighting By equal weighting, we mean that w(x) = 1 and W (x) is an

identical transformation, x 2 (0; 1], thus

F̂E
T (z) =

1

T

TX
t=1

If
t+k�zg;

and

X�
T;E =

1

T�

TX
t=1

(�� 
t+k)
+: (6.2)

Recall that mt = (�� 
t+k)
+s are iid with the PDF of mixture of a mass, 1� �,

at 0 and a Uniform(0; 1) on (0; �], so that we can omit the suÆx t and denote the

CDF as

F (m) = Pr(M � m) =

8>>>>>>>>>><>>>>>>>>>>:

0 when m < 0,

1� � when m = 0,

1� � +m when 0 < m � �;

1 when m > �:
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If the sample size T is reasonably large, we can estimate the critical values for

the test by an approximation. One example will be the following asymptotic normal

approximation.

We notice that

E(M) =
�2

2
� 1

2
; � 2 (0; 1];

and

VaR�(M) = E(M2)� [E(M)]2 =
�3

3
� �4

4
� 1

12
; � 2 (0; 1]:

By Central Limit Theory, we have

p
T
�
X�
T;E �

�

2

�
d�! N

�
0;
�

3
� �2

4

�
: (6.3)

For a large sample size T , the result of (6.3) can be used to construct the critical

values and con�dence intervals for the test statistics (6.2):

c� =
�

2
+

1p
T
z�

r
�

3
� �2

4
;

when � is the speci�ed the con�dence level, T and � are given, and z� is the critical

value of the standard normal distribution.

T = 250 is a typical case; the above value may not be very close to the true

one (A Monte Carlo study will illustrate this point later). Another approximation is

considered here based on a Poisson distribution in hope of doing a better job.
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Notice that we can rewrite the test statistic (6.2) as

X�
T;E =

1

T

NX
t=1

Ut: (6.4)

where N � Binomial(T; �) and Ut
iid� Uniform(0; 1). N and Ut's are independent.

The characteristic function (c.f.) of X�
T;E is

�(t) = E(eitX
�
T;E )

=

Z 1

0

eitxd[F (x)]

= E(eit
1
T

PN
t=1 Ut)

= E[E(eit
1
T

PN
t=1 Ut)jN ]

= E[(
T

it
)N(e

it
T � 1)N jN ]

(6.5)

where F (x) is the CDF of X�
T;E.

Poisson (T�) can be a good approximation to N �Binomial (T; �), with PDF
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pn = Pr(N = n) = e�T� (T�)n

n!
. Thus, the characteristic function (c.f.) of the Poisson

approximation, denoted by �P (t), is

�(t) � �P (t) =
1X
n=0

(
T

it
)n(e

it
T � 1)ne�T�

(T�)n

n!

=
1X
n=0

�
T 2�

it
(e

it
T � 1)

�n
e�T�

n!

= e
�T�+T� T

it

�
e
it
T �1

�

= e
�T�

�
1� T

it

�
e
it
T �1

��

(6.6)

When the maximum sample size is T , the use of the truncated Poisson (T�) at T

might be reasonable, that is

�(t) � s(T )
TX
n=0

�
T 2�

it
(e

it
T � 1)

�n
e�T�

n!

(6.7)

where s(T ) = eT�PT
n=0

(T�)n

n!

.
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The exact (Binomial) c.f. is

�(t) =
TX
n=0

(
T

it
)n(e

it
T � 1)npn

(6.8)

where pn = Pr(N = n) =
�
T
n

�
�n(1� �)T�n.

Thus

�(t) = E(eitX
�
T;E) = (1� �)T

TX
n=0

�
T

n

��
�

1� �

�n�
T

it

�n
(e

it
T � 1)n

=

�
1� � + �

T

it

�
e
it
T � 1

��T
;

(6.9)

For any given sample size T , we know that there is a mass p at 0, which contributes

discontinuity to the whole distribution functions of the proposed statistics. Let Fc(x)

be the continuous part of the distribution function de�ned on (0; 1] and �c(t) be the

corresponding characteristic function; then we have

F (x) = p + [1� p]Fc(x)I[x>0]

=) �(t) = p + [1� p]�c(t)

=) �c(t) =
�(t)� p

1� p
: (6.10)
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The mass p and the corresponding characteristic functions of di�erent methods

generated by (6.10), are listed in the following table.
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Table 6.1: CF for Continuous Part { Equal Weighting. Characteristic functions
of the corresponding continuous distributions with di�erent methods.

�(t) p �c(t)

Binomial
h
1� � + �T

it
(e

it
T � 1)

iT
(1� �)T

�
1��+� T

it
(e

it
T �1)

�T
�(1��)T

1�(1��)T

Poisson e�T�[1�
T
it
(e

it
T �1)] e�T� e�T�[1�

T
it (e

it
T �1)]�e�T�

1�e�T�

Truncated-P S(T )
PT

0

h
T 2�
it
(e

it
T � 1)

in
e�T�

n!
S(T )e�T�

S(T )
PT

0

�
T2�
it

(e
it
T �1)

�n
e�T�

n!
�S(T )e�T�

1�S(T )e�T�
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We will use the following relationship to remove the discontinuity and focus on

the numerical methods only on continuous part of the distribution.

Given the characteristic functions of Binomial - exact, Poisson and Truncated

Poisson methods for proposed test statistic, we can numerically estimate the distri-

bution function by evaluating the Gil-Palaez inversion integral

F (x) =
1

2
�
Z 1
�1

�(t)

2�it
eitxdt (6.11)

by numerical quadrature. Fourier series are truncated for numerical computation.

The fast Fourier transform (FFT) may be used to speed up the calculation.

Bohman (1975)[15] and Davies (1973) [20] originally proposed algorithms to nu-

merically invert characteristic functions to obtain cumulative distribution functions.

The results are generalized and extended to multivariate random variables by Shep-

hard (1991) [53]. Davis (1973) obtains error bounds for the sampling and truncation

error, but the bounds are not easily expressed in terms of the characteristic function.

Hughett (1998) extends the previous work by obtaining error bounds for computing

the probability density function and the cumulative distribution function from the

characteristic function based on the decaying speeds of characteristic functions and

density functions. We adopt the Huggett's approach to generate a numerical ver-

sion of the CDF estimates, thus �nd the critical values for the test4. The detailed

procedures are provided as follows.

Remark 6 Numerical Inversion of a Characteristic Function
4We will leave the error bounds discussion for the future work.



www.manaraa.com

85

� Characteristic Function is obtained by

�(t) =

Z 1
�1

eitxf(x)dx:

� Construct an auxiliary function fc(x) which is well behaved in the sense that

both it and its Fourier transform decay rapidly to zero and from which it is easy

to compute and approximation to F (x) over some selected interval [�D=2; D=2].

By Hughett (1998) [33], we choose

fc(x) = F (x)� 1

2
F (x�D)� 1

2
F (x +D);

thus F (x) �= fc(x) +
1
2
. Observed that the right hand side of the equation

approaches F (x) as D increases for any �xed x, and fc(x) approaches 0 as

x! �1 for any �xed D.

� g(x) is a lowpass-�ltered approximation of F (x) on [�L=2; L=2] based on fc(x)

by

g(x) =

N=2X
k=�(N=2)

G[k]ei2�kx=L

where G[k] is the �nite sequence de�ned by

G[k] =

8>>>>>><>>>>>>:

1
2

for k = 0,

1�cos(2��k)
i2�k

�(�2�k=L) for 0 < jkj < N=2,

0 for jkj = N=2

where � = D=L is the fraction of the interval (-T/2, T/2) over which g(x)

accurately approximates the F (x)
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� By Inverse Discrete Fourier transformation with R function �t() we get discrete

approximation fg[k]gNk=0 of g(x), where N is power of 2 in order to speed up

the computing by FFT.

� Linear interpolation5 is utilized to make the discrete point more useful for the

critical value calculation at con�dence level � = 0:05; 0:10. If there exists an

n, 0 � n � N , such that g[n] � 1 � � and g[n + 1] > 1 � �, then c� can be

achieved by

c� �
�

1� � � g[n]

g[n+ 1]� g[n]
+ n

�
L

N

A comparison of their performances can be viewed in the following graphs and

tables.

5A band-limited interpolation method is proposed in the Hughett [33], but it is too ideal to
implement. Linear interpolation is doing reasonably well, here.
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Table 6.2: Critical Values { Equal Weighting. A numerical estimation with FFT,
sample points = 213, interval [0; 1], Linear Interpolation = No.

Critical Values { c�

Exact Approximate Approximate Asymptotic

� T Binomial Poisson Truncated P Gaussian

2 0.24835200 0.24639890 0.24572750 0.17231160
5 0.16577150 0.16693120 0.16693120 0.11816805
10 0.09924316 0.10015869 0.10015869 0.09087976

0.05 50 0.05810547 0.05883789 0.05883789 0.05446232
100 0.04772949 0.04821777 0.04821777 0.04583301
250 0.03894043 0.03924560 0.03924560 0.03817595
1000 0.03179932 0.03192139 0.03192139 0.03158798

2 0.00000000 0.00000000 0.00000000 0.13977460
5 0.12011720 0.11993400 0.11993400 0.09758984
10 0.08636475 0.08685303 0.08685303 0.07632877

0.10 50 0.04937744 0.04980469 0.04980469 0.04795492
100 0.04193115 0.04229736 0.04229736 0.04123158
250 0.03558350 0.03576660 0.03576660 0.03526575
1000 0.03021240 0.03033447 0.03033447 0.03013288
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Table 6.3: Critical Values { Equal Weighting. A numerical estimation with FFT,
sample points = 212, interval [0; 1], Linear Interpolation = Yes.

Critical Values { c�

Exact Approximate Approximate Asymptotic

� T Binomial Poisson Truncated P Gaussian

2 0.00012173 0.24643676 0.24578471 0.17231160
5 0.16579990 0.16699950 0.16699930 0.11816805
10 0.09930414 0.10018474 0.10018474 0.09087976

0.05 50 0.05813861 0.05891749 0.05891749 0.05446232
100 0.04775999 0.04827149 0.04827149 0.04583301
250 0.03900192 0.03930324 0.03930324 0.03817595
1000 0.03184441 0.03198380 0.03198380 0.03158798

2 0.00000000 0.00012142 0.00012140 0.13977460
5 0.12018720 0.11998240 0.11998210 0.09758984
10 0.08645226 0.08692432 0.08692432 0.07632877

0.10 50 0.04941397 0.04988423 0.04988423 0.04795492
100 0.04199696 0.04233696 0.04233696 0.04123158
250 0.03561592 0.03582833 0.03582833 0.03526575
1000 0.03026758 0.03037117 0.03037117 0.03013288
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The above graphs gives us some idea about the shape of the distributions with

di�erent sample sizes. Gibbs's Phenomena are detected due to the discontinuity of

the density at zero. Since we calculate the critical values on the right tail of the

distribution, Gibbs's Phenomena should not a�ect our results very much.

The above two tables show that when sample size T is reasonably big, the three

proposed approximation methods perform well - close to the exact critical values.

When sample size is small, Gaussian method turns to be more conservative while

Poisson and Truncated Poisson methods still perform reasonably well. It does not

show much di�erence between Poisson and Truncated Poisson method6, except for

the extreme case of T = 2.

By comparing the above two tables, we know that using linear interpolation

method for the discrete points on the estimated distribution curve is computationally

more eÆcient. The grid points for integration can be reduced at least by half to

achieve the same accuracy for the critical values.

6Truncated Poisson method did show some advantage in reducing the thickness of the right tail
at x = 1, when sample size T is small.



www.manaraa.com

96

Reciprocal Weighting By reciprocal weighting, we mean that w(x) = 1
x
and

W (x) = lnx.

Thus

F̂R
T (z) =

1

Tz

TX
t=1

If
t+k�zg;

and

X�
T;R =

1

T�

TX
t=1

(ln�� ln 
t+k)
+: (6.12)

We de�ne m0t = (ln�� ln 
t+k)
+s, iid with the PDF of mixture of a mass, 1� �,

at 0 and a � times Exponential (1) on (0;1), so that we can omit the suÆx t and

denote its CDF as

F (m0) = Pr(M 0 � m0) =

8>>>>>><>>>>>>:
0 when m0 < 0,

1� � when m0 = 0,

1� �e�m
0

when m0 > 0

If the sample size T is reasonably large, we can estimate the critical values for

the test by an approximation. One example will be the following asymptotic normal

approximation.

We notice that

E(M 0) = � � 1; � 2 (0; 1];

and
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VaR�(M
0) = E(M 02)� [E(M 0)]2 = 2�� �2 � 1; � 2 (0; 1]:

By Central Limit Theory, we have

p
T
�
X�
T;R � 1

� d�! N

�
0;
2� �

�

�
: (6.13)

For a large sample size T , the result of (6.13) can be used to construct the critical

values and con�dence intervals for the test statistics (6.12):

c� = 1 +
1p
T
z�

r
2� �

�
;

when � is the speci�ed the con�dence level, T and � are given, and z� is the critical

value of the standard normal distribution.

As we discussed before, T = 250 is a typical case and the above value may not

be very close to the true one (A Monte Carlo study will illustrate this point later).

Another approximation is considered here based on a Poisson distribution in hope of

doing a better job.

Notice that we can rewrite the test statistic (6.12) as

X�
T;R =

1

T�

NX
t=1

Et: (6.14)

where N � Binomial(T; �) and Et
iid� Exponential(1). N and Et's are independent.
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The characteristic function (c.f.) of X�
T;R is

�0(t) = E(eitX
�
T;R)

=

Z 1
0

eitxd[G(x)]

= E(eit
1
T�

PN
t=1 Et)

= E[E(eit
1
T�

PN
t=1Et)jN ]

= E

"�
1

1� i t
T�

�N
jN
#

(6.15)

where G(x) is the CDF of X�
T;R.

Poisson (T�) can be a good approximation to N �Binomial (T; �), with PDF

pn = Pr(N = n) = e�T� (T�)n

n!
. Thus, the characteristic function (c.f.) of the Poisson

approximation, denoted by �0P (t), is

�0(t) � �0P (t) =
1X
n=0

1

(1� i t
T�
)n
e�T�

(T�)n

n!
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=
1X
n=0

�
T�

1� i t
T�

�n
e�T�

n!

= e�T�[1�
1

1�it=(T�) ]

(6.16)

When the maximum sample size is T , the use of the truncated Poisson (T�) at T

might be reasonable, that is

�0(t) � s(T )
TX
n=0

�
T�

1� i t
T�

�n
e�T�

n!
;

(6.17)

where s(T ) = eT�PT
n=0

(T�)n

n!

.

The exact or binomial c.f. is

�0(t) =
TX
n=0

1

(1� i t
T�
)n
pn

= (1� �)T
TX
n=0

�
T

n

��
�

(1� �)(1� i t
T�
)

�n

=

�
1� �

�
1� 1

1� it=(T�)

��T
(6.18)
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where pn = Pr(N = n) =
�
T
n

�
�n(1� �)T�n.

Again, we will devote our e�ort to the estimation of the continuous part of the

distribution functions. �(t); p and the corresponding �c(t) are listed in the following

table:
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Table 6.4: CF for Continuous Part { Reciprocal Weighting. Characteristic
functions of the corresponding continuous distributions with di�erent methods.

�(t) p �c(t)

Binomial
h
1� � + �

1� it
T�

iT
(1� �)T

�
1��+ �

1� it
T�

�T
�(1��)T

1�(1��)T

Poisson e
�T�

�
1� 1

1� it
T�

�
e�T� e

�T�

"
1� 1

1� it
T�

#
�e�T�

1�e�T�

Truncated-P S(T )
PT

0

h
T�

1� it
T�

in
e�T�

n!
S(T )e�T�

S(T )
PT

0

�
T�

1� it
T�

�n
e�T�

n!
�S(T )e�T�

1�S(T )e�T�
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The same argument, numerical inversion of a characteristic function, as for the

equal weighting test statistic is suÆce to generate critical values for the reciprocal

weighting case. Please refer to Remark 6, for the detailed discussion of the computing

steps. Graphs and tables are provided for comparisons.

A comparison of their performances can be viewed in the following graphs and

tables.
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Table 6.5: Critical Values { Reciprocal Weighting. A numerical estimation with
FFT, sample points = 220, interval [0; 34], Linear Interpolation = No.

Critical Values { c�

Exact Approximate Approximate Asymptotic

� T Binomial Poisson Truncated P Gaussian

2 4.209300 3.998569 3.982347 8.263477
5 6.316615 6.342339 6.342339 5.593826
10 5.137044 5.187409 5.187409 4.248326

0.05 50 2.720970 2.745535 2.745535 2.452695
100 2.170349 2.186803 2.186803 2.027211
250 1.710185 1.719918 1.719918 1.649665
1000 1.340632 1.345190 1.345019 1.324833

2 0.000000 0.000000 0.000000 6.659178
5 3.252511 3.208171 3.208171 4.579179
10 3.435897 3.450728 3.450728 3.530862

0.10 50 2.203488 2.219092 2.219092 2.131836
100 1.843978 1.855102 1.855102 1.800329
250 1.526336 1.533288 1.533288 1.506172
1000 1.258673 1.262072 1.262072 1.253086
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Table 6.6: Critical Values { Reciprocal Weighting. A numerical estimation with
FFT, sample points = 215, interval [0; 34], Linear Interpolation = Yes.

Critical Values { c�

Exact Approximate Approximate Asymptotic

� T Binomial Poisson Truncated P Gaussian

2 4.209453 3.998739 3.982475 8.263477
5 6.316839 6.342550 6.342537 5.593826
10 5.137266 5.187574 5.187574 4.248326

0.05 50 2.721092 2.745672 2.745672 2.452695
100 2.170441 2.186898 2.186898 2.027211
250 1.710255 1.720000 1.720000 1.649665
1000 1.340743 1.345274 1.345274 1.324833

2 0.000000 0.000000 0.000000 6.659178
5 3.252675 3.208335 3.208329 4.579180
10 3.436002 3.450857 3.450857 3.530862

0.1 50 2.203603 2.219186 2.219186 2.131836
100 1.844090 1.855171 1.855171 1.800329
250 1.526458 1.533363 1.533363 1.506172
1000 1.258784 1.262146 1.262146 1.253086
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Again, the above graphs give us some idea about the shape of the distributions

with di�erent sample sizes. Gibbs's Phenomena are detected due to the discontinuity

of the density at zero. Since we calculate the critical values on the right tail of the

distribution, again, they should not a�ect our results very much.

The above two tables show that when sample size T is reasonably big, the Poisson

and Truncated Poisson approximation methods perform well - close to the exact

critical values. Gaussian method turns out to be loose, in the sense that it over-

estimate the critical values, when T is small; it is conservative, in the sense that it

under-estimate the critical values, when T is reasonably big. When T is big enough,

all methods will converge to the asymptotic Gaussian, but the converging speed is

much slower than the equal weighting case. Part of the reason was because the

exponential distribution is a highly skewed one, the converging speed of the empirical

distribution is slow. The related discussion can be found in consistency and power

consideration.

When sample size is small, Poisson and Truncated Poisson methods still perform

reasonably well. It does not show much di�erence between Poisson and Truncated

Poisson method.

By comparing the above two tables, we know that using linear interpolation

method for the discrete points on the estimated distribution curve is computation-

ally more eÆcient . The grid points for integration can be reduced at least by seven

eighthes to achieve the same accuracy for the critical values.
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Asymptotic Properties

Remark 7 Consistency Consideration of Proposed Test Statistics.

Assume the true (accurate) conditional CDF of �t as in Assumption 2 is Gt(x),

and model-de�ned Ft(x)
7

�t � Gt(x)

thus by Rosenblatt's discussion in [46]

Gt(�t)
iid� Uniform(0; 1); t = 1; � � � ; T:

Instead, we use model-de�ned CDF, Ft(x), when the true CDF is not available.

We want to explore the properties of Yt = Ft(�t). If it is an iid sample, the asymptotic

property of the class of the proposed test statistics is much more manageable.

We know that

Gt[F
�1
t (Yt)]

iid� Uniform(0; 1); t = 1; � � � ; T;

thus,

Yt = Ft[G
�1
t (Ut)]

In developing our consistent version of the proposed test statistic, we con�ne our

attention to a random sample f �1; � � � ; �n g from an unconditional distribution G(�)

on R by omitting sub-index t. It seems possible to extend the results below to the

7We use simpli�ed notation here to illustrate the basic idea.
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heterogeneous and /or time series case - for instance, the following results hold for

any Ft(x) and Gt(x) such that

Ft[G
�1
t (Ut)] � F [G�1(Ut)]; (6.19)

for some time-independent CDFs, F (�) and G(�).

We call a CDF F (�) under estimated for a CDF G(�) if and only if F (x) � G(x),

for all x 2 R, which is our alternative hypothesis of interest.

By Rosenblatt (1952) in [46] and the above assumption,

Yt = F (�t) � G(�t) = 
t
iid� Uniform(0; 1); t = 1; � � � ; T;

i.e. Yt is randomly smaller than 
t. Then we know that

FY (�) � FU(�):

By the Glivenko-Cantelli theorem, as discussed in 3.3,

1

T

TX
t=1

If
t�zg
P�! z; z 2 [0; 1]:

By the Dominance Convergence Theorem,

X�
T;W =

1

�

Z �

0

F̂W
T (z)dz

P�! 1

�

Z �

0

w(z)zdz

if w(z) is bounded8 or integrable on [0; �]:

8The reciprocal weighting scheme is not satisfying this condition in general, because of the singular
point at z = 0.
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Under the alternative hypothesis,

1

�

Z �

0

F̂W
T (z)dz

P�! 1

�

Z �

0

w(z)FY (z)dz � 1

�

Z �

0

w(z)zdz:

Since

FY (z) = GF�1(z);

the proposed test statistic will be consistent by de�nition, if GF�1(Z)�Z 6= 0 almost

surely.

Remark 8 Asymptotic Normality Under H0 - a generalized case.

We have individually explored the asymptotic normality of equal and reciprocal

weighting cases in the �rst part of this subsection. A general result will be presented

here9, given that w(z) is bounded10. Consider the proposed test statistic11 and de�ne

Z�T =

"Z �

0

w(z)
1

T

TX
t=1

If
t�zgdz

#

Notice that

T
1
2Z�T / T

1
2

�
X�
T;W

�
: (6.20)

9A more general result may be developed, given any random weighting process wT (z) , which is
uniformly integrable (this is certainly the case when wT is bounded uniformly by the same constant)
on [0; �] and converges uniformly in z to the deterministic function w(z) as T �!1, i.e.,

sup
z

jwT (z)� w(z)j
P
�! 0;

and that w(z) is uniformly bounded
10For the parallel case of \risk aversion function" generating a space of coherent risk measures,

the weighting function is a normalized function on interval [0; �], or [0; 1].
11Notice that we can generalize the test statistics by the substitution of the deterministic weighting

function w(z) in the previous subsection to a stochastic process wT (z) on [0; �].
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By Remark 7, it is not diÆcult to see that (6.20) has its �rst moment

�T = T
1
2

Z �

0

w(z)zdz = T
1
2

�
�W (�)�

Z �

0

W (x)dx

�
;

via integration by part, when W (x) is integrable on (0; �) 12, under H0. Now, its

second moment will be our focus here. Without losing generality, we assume fYtgTt=1 is

a random sample de�ned as in Remark 7. When bothW (x) andW 2(x) are integrable

on (0; �), we have

�2 = V ar(T
1
2Z�T )

= T [E(Z�T )
2 � E2(Z�T )]

= T

0@E "Z �

0

w(z)
1

T

TX
t=1

If
t�zgdz

#2
� E2(Z�T )

1A

P�! 2

Z �

0

Z y

0

w(x)w(y)x(1� y)dxdy

= (1� �)

�
�W 2(�)� 2W (�)

Z �

0

W (x)dx

�
+

Z �

0

W 2(x)dx�
�Z �

0

W (x)dx

�2
(6.21)

Thus, under H0

T
1
2Z�T � �T

�

D(H0)�! AN(0; 1) (6.22)

12Notice that this result holds for equal weighting case, but not the reciprocal one because the
integrability condition is not satis�ed.
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Power Considerations and Optimal Weights

We can construct some local alternatives against the null hypothesis, and talk

about the power of proposed statistics. The exponential families13 can be good can-

didates. Once we formulate every thing in terms of weighting functions, we can also

talk about the optimal weighting schemes to achieve the optimal power for the spe-

ci�c local alternatives. Again, we con�ne our attention to the situation where (6.19)

holds.

As you might imagine, the results will be very messy even for the exponential

families, since they heavily rely on the inverse functions of the CDFs. We start with

a simple example of 1-parameter exponential family.

Consider a family of pdf's or pmf's fg(xj�) : � 2 �g, where

g(xj�) = h(x)c(�) exp[b(�)t(x)]:

In order to introduce the basic idea, we simplify the problem to a special case

g(xj�) = c(�)t
0

(x) exp[b(�)t(x)];

so that the corresponding cdf's will have the form

G(xj�) = 1 + a(�) exp[b(�)t(x)];

where c(�) = a(�)b(�), a(�) and b(�) are chosen such that g(xj�) and G(xj�) are

valid pdf and cdf respectively. Obviously, a(�) is required to be negative and b(�)t(x)

non-positive.
13The location-scale families are also of interest and we will leave it for future work.
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Consider the null and alternative hypotheses as a sequence in T ,

H0T : G(xj�) = 1 + a(�) exp[b(�)t(x)]

H1T : FT (xj�) = 1 + a(�) exp[(b(�) + �Td(�))t(x)]

where �T converges to zero at the rate of T
1
2 , that is T

1
2�T �! � 6= 0. Without losing

generality we assume d(�)t(x) > 0, which will simplify our discussion later. The sign

of �Td(�) is speci�ed according to the sign of t(x)14, such that

G(x) > FT (x);

which means that we are only interested in detecting the power of the proposed test

against the sequence of the alternatives under-estimating the true cdf's within the

family speci�ed by (6.23).

Remark 9 Power Considerations. Since �T is converging to zero, the alternatives

are considered local alternatives. The reason that we choose �T to be order T
1
2 will

be evident when we derive the asymptotic power of the test.

In order to �nd the asymptotic power, we need to �nd the limiting distribution of

the proposed test statistic for the sequence of the local alternatives:

H1T : FT (xj�) = 1 + a(�) exp[(b(�) + �Td(�))t(x)]:

14A simple example will be that �T d(�) > 0, given t(x) = x, but we will ignore the speci�cation
details here and will focus on the asymptotic properties of the test statistics under H1T when no
confusion occurs in the rest of the discussion.
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Consider the test statistics, centralized by �T and normalized by T
1
2 , i.e.

T
1
2Z�T � �T = T

1
2

"Z �

0

w(z)
1

T

TX
t=1

(IfF [G�1(Ut)]�zg � z)dz

#
(6.23)

where Ut's are iid Uniform(1) samples, and

F [G�1(Ut)] � z () Ut � 1 + a(�) [�a(�)]
�b(�)

b(�)+�T d(�)| {z }
hT (�)�!�a(�)�1

(1� z)
b(�)

b(�)+�T d(�)

so that we have

E
FT (�)

[T
1
2Z�T � �T ] = E

FT (�)

Z �

0

w(z)[T
1
2 (IfF [G�1(Ut)]�zg � z)]dz (6.24)

=

Z �

0

w(z)[T
1
2E

FT (�)
(IfF [G�1(Ut)]�zg � z)]dz (6.25)

Uniform(1)
=

Z �

0

w(z)T
1
2 [1 + a(�)hT (�)(1� z)

b(�)

b(�)+�T d(�) � z]dz

Notice that (6.24) holds because of iid assumption, and that some regularity con-

ditions will be needed for exchanging integrals in (6.25).

Thus, we have

E
FT (�)

[T
1
2Z�T � �T ] �!

Z �

0

w(z) lim
T�!1

T
1
2 [1 + a(�)hT (�)(1� z)

b(�)

b(�)+�T d(�) � z]dz

(6.26)

�!
Z �

0

w(z)(1� z) lim
T�!1

T
1
2 [1� (1� z)

b(�)

b(�)+�T d(�)
�1
]dz

=

Z �

0

w(z)(1� z) lim
T�!1

T
1
2 [1� (1� z)

��T d(�)

b(�)+�T d(�) ]| {z }
 T (z)

dz;
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Again, some regularity conditions are needed for exchanging limit and integral in

(6.26).

By Maclaurin Series, we have

 T (z) = T
1
2 [

��Td(�)
b(�) + �Td(�)

z + o(�2T )]

�! �T 1
2�Td(�)

b(�) + �Td(�)
z

�! ��d(�)
b(�)

z > 0 (6.27)

Thus,

E
FT (�)

[T
1
2Z�T � �T ] �! �� d(�)

b(�)

Z �

0

w(z)z(1� z)dz| {z }
�A(�;w)

Consider empirical process de�ned below

HT (z) �
p
(T )

"
1

T

nX
1

IfUt�zg � z

#
;

with mean zero, variance z(1� z), and

cov(HT (x); HT (z)) = x(1� z):

By weak convergence theory, we know that Ht(z) has a limiting Gaussian process,

i.e. Brownian Bridge. Since linear functionals, such as integrals, will not change the

Gaussian property, we know that (6.23) has a limiting Gaussian distribution under

suitable regularity conditions. We will �nd the limiting second moment based on the

property of Brownian Bridge.
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For our case, notice that

HT

 
1� (1� z)

b(�)

b(�)+�T d(�)

!
D�! HT (z);

so that

V ar
FT (�)

[T
1
2Z�T � �T ]

P�! 2

Z �

0

Z y

0

w(x)w(y)x(1� y)dxdy

= �2:

Let us de�ne

QT (w) � T
1
2Z�T � �T

�
;

and we know that

QT (w)
D(H0T )�! N(0; 1)

QT (w)
D(H1T )�! N

�
�A(�; w)

�
; 1

�
: (6.28)

The asymptotic power is illustrated by the following graph,
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Figure 6.13: Graphical illustration of Asymptotic Power.

An asymptotic level � test (one-sided) rejects H0T , when

jQT (w)j � z�:

Thus, we know that the asymptotic power to detect the alternative H1T will

coverage to

�

�
�A(�; w)

�
� z�

�
;

where �(�) denotes the CDF of a standard normal distribution.

Since the power increases as the non-centrality parameter �A(�;w)
�

, therefore the

weighting function w(z) which maximize �A(�;w)
�

or

�� d(�)

b(�)

R �
0
w(z)z(1� z)dz�

2
R �
0

R y
0
w(x)w(y)x(1� y)dxdy

�1
2

;
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will generate the optimal asymptotic power.

6.2 Other Approaches

Beyond hypothesis testing method, tests based on the idea of minimizing economic

loss function, was proposed, too. See Lopez (1997) [35] and some other literatures

for details. This kind of approaches are generally considered outside the hypothesis-

testing paradigm, but can also be a reasonable criteria to test the model validity or

forecasting accuracy.
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Part IV

Summarizing Remarks
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Chapter 7

Summarizing Remarks

7.1 Conclusion

This dissertation o�ers a systematic study on the coherent risk management prob-

lems in a decision-under-risk framework, where the distributions of the uncertain

outcomes are always known or estimable to the decision makers. Both economic and

statistical aspects of the answers to the risk management problems are provided with

great details, although the main focus is always on the statistical solutions.

In the early part of this dissertation research, we investigate the economic reasons

why a coherent risk measure, such as ES�, is an interesting quantity. We show that

ES� is not only a reasonable screening device in ranking the the portfolio choices but

also a natural benchmark measure for the risk capital assessment, comparing to a

non-coherent risk measure VaR�. As a risk measure in the two-parameter portfolio
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selection rules, ES� is consistent with the Expected Utility Hypothesis for all the

decision makers with nondecreasing and convex utilities, thus consistent with the SSD.

As a risk measure indexing the level of risk capital to protect institutions from extreme

losses, ES� is a natural remedy for VaR�, given that VaR� is not sub-additive but well-

accepted as an industrial standard for risk capital calculations. Disaggregating the

risk capital down to the business level also catches enough attention in this research,

because we believe that fairly allocating risk capital is essential to keep a stable

incentive structure among the trading desks or alternatively locally signaling the

better performed assets in the given portfolio.

The later part of this dissertation research is dedicated to the statistical meth-

ods in solving the coherent risk management problems. Both modeling methods for

VaR�, ES� and SES�, and back-testing methods based on ES� are discussed. We

o�er consistent estimators in the non-parametric modeling framework. Analytic ex-

pressions and simulation studies in the parametric framework are provided for the

multivariate Gaussian, the fat-tailed multivariate t-distribution and the general el-

liptical families. Back-testing methods based on ES� in a hypothesis test framework

are proposed. A class of consistent test statistics with di�erent weighting schemes

on the tail part are proposed and studied carefully. We tabulate the critical values

to the three digit accuracy for two test statistics with particular weighting functions,

in four estimation methods. Three of the estimation methods involve the numerical

inversion of characteristic functions. The asymptotic normality of the test statistics
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is proved in a general setup. The asymptotic power function is provided for a class

of exponential families, with optimal weighting scheme discussed.

7.2 Future Research

As we have already book-marked in the body of the dissertation, there are quite

a few topics that we would like to leave for future work. Meanwhile, we can not

enumerate them all here but list a few major issues as examples.

One is to model the ES� with spline methods and compare the accuracy loss

and gain with the existing kernel methods or other nonparametric methods for the

purpose of estimating SES�. As Scaillet (2002) [52] also mentioned that spline method

is anther option to achieve smooth estimators for CDFs and PDFs, so that VaR�,

ES� and SES� are easily calculated. We do not devote any time on this topic in the

dissertation, partially because we have been focusing on other issues so that we do

not have a chance to really work on it.

Another one is to study some real portfolios (P/L) behaviors. Dr. Kyle personally

has been suggesting some real data from di�erent markets as a starting point for the

ES� modeling, since it will be very interesting to see some good applications from

our theoretical discussions. The potential applicable methods include the methods

for the fat-tailed return data, and ES� based back-testing methods for model valida-

tion. Again, this line of research is computational intensive and a careful selection of

empirical data is always crucial.
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The last potential future topic in this list is the continuing study on the asymp-

totic power properties for proposed test statistics. We o�er a power function for an

exponential family in the dissertation and talk about the optimal weighting schemes.

Unfortunately, we do not o�er the analytic/numerical solution to it. This line of

research requires solving integral equations analytically or numerically. Since this is

down to a pure mathematical problem and is computationally intensive, we will do

it later on. We would be able to give, at least, a numerical solution in the future.

Another distributional family we would like to work on is the location-scale family.

Comparing to the exponential family, the location-scale family is harder to deal with

because its inverse CDF is not easy to express analytically. The messy part will be

the �rst order or second order approximation for the calculation, but we view it as a

workable problem and would like to further investigate it.
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